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Salmhofer has demonstrated the equivalence of the strong coupling lattice Schwinger model with Wilson
fermions to a self-avoiding loop model on the square lattice with a bending rigidityh51/2. The present paper
applies two approximate analytical methods to the investigation of critical properties of the self-avoiding loop
model for variableh, discusses their validity, and makes a comparison with known Monte Carlo results. One
method is based on the independent loop approximation used in the literature for studying phase transitions in
polymers, liquid helium, and cosmic strings. The second method relies on the known exact solution of the
self-avoiding loop model withh51/A2. The present investigation confirms recent findings that the strong
coupling lattice Schwinger model becomes critical forkcr.0.3820.39. The phase transition is of second order
and lies in the Ising model universality class. Finally, the central charge of the model at criticality is discussed
and predicted to bec51/2. @S0556-2821~97!04316-6#

PACS number~s!: 11.15.Ha, 05.501q, 11.10.Kk

I. INTRODUCTION

Recently, the strong coupling lattice Schwinger model
with Wilson fermions (Nf51) has received some attention
@1–6# following work by Salmhofer@7# who has shown that
it is equivalent to a certain eight-vertex model~a seven-
vertex model, more precisely! which also can be understood
as a self-avoiding loop model on the square lattice with a
bending rigidity h51/2 and monomer weightz5(2k)22.
Beyond its toy character, interest in the lattice Schwinger
model@two-dimensional QED (QED2)# mainly derives from
the similarity of some of its major features with those of
QCD in four dimensions. However, because the result of
Salmhofer@7# is related to the polymer~hopping parameter!
expansion of the fermion determinant@8,9# the strong cou-
pling Schwinger model is also interesting from the point of
view of the dynamical fermion problem within lattice gauge
theory. While some investigations have been devoted to the
polymer expansion of the fermion determinant in the case of
staggered fermions@10–14#, to date, almost no attention has
been paid to the corresponding case of Wilson fermions@15#
due to the additional difficulties involved in general, as the
larger number of Grassmann variables per lattice site and the
explicit breaking of chiral symmetry. However, while in the
strong coupling limit the system with staggered fermions
~QCD, QED! reduces to a pure monomer-dimer system@16#,
the same is not true for Wilson fermions as the investigation
of Salmhofer@7# demonstrates. The equivalence of the strong
coupling lattice Schwinger model with Wilson fermions to a
self-avoiding loop model enables certain methods used in
other branches of physics, e.g., in condensed matter physics
~polymers, defect-mediated phase transitions! and in cosmic

string physics, to be exploited in its investigation@17–22#.
At the same time, its equivalence~in another language! to
some eight-vertex model@23# makes further results avail-
able.

Self-avoiding loop models@24–26# have a long history
due to their prominent role in polymer physics as well as
their inherent attractiveness as a simple problem of non-
Markovian nature. In addition, systems of closed noncross-
ing lines or systems, which can be approximated by them,
appear in a variety of contexts ranging from condensed mat-
ter physics through cosmology to quantum field theory
which generates common interest for appropriate model
building @27,17#. Recently, quantum field theoretic methods
have been exploited to study the critical behavior of self-
avoiding loop models in two dimensions@28–31#. Somewhat
less attention has been paid so far to the self-avoiding loop
model with a variable bending rigidity~while for open chains
with bending rigidity a number of investigations exists, e.g.,
@32# and references therein!. Beyond the work of Mu¨ser and
Rys @33,34#, certain insight in this direction has been ob-
tained in connection with the study of two-dimensional
vesicles@35–37#.

From the point of view of the eight-vertex model, a gen-
eral solution to the self-avoiding loop model with a variable
bending rigidity on the square lattice is not known. However,
for the special caseh51/A2, the free-fermion condition
@38,39# is satisfied and it can be solved exactly@40–42#. This
way, one point on the critical line of the the self-avoiding
loop model with a variable bending rigidity is known exactly
and, consequently, one may use analytic perturbative meth-
ods to approximately find the critical line in its neighbor-
hood.

The plan of the paper is as follows. In Sec. II we briefly
review the relevant facts concerning the lattice Schwinger
model with Wilson fermions and discuss the relation of re-
cent studies of it@4–6# to the earlier Monte Carlo~MC!
results of Müser and Rys@33,34#. Section III is devoted to
the approximate analytical study of the self-avoiding loop
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model~SALM! with a variable bending rigidity by means of
the independent loop approximation. Section IV then ex-
plores the application of the exact solution of the SALM
with a bending rigidityh51/A2 to the study of the critical
behavior of the SALM in a neighborhood of this point in the
relevant parameter space. Section V finally discusses the pic-
ture emerging from the present investigation paying special
attention to the central charge of the SALM with a variable
bending rigidity on the critical line.

II. THE STRONG COUPLING SCHWINGER MODEL
WITH WILSON FERMIONS

The partition functionZL of the Schwinger model with
Wilson fermions~with Wilson parameterr 51) on a certain
lattice L is given by the standard expression

ZL5E DUDcD c̄e2S, ~1!

whereD denotes the multiple integration on the lattice. The
actionS is defined by

S5SF1bSG , ~2!

SF5 (
xPL

S 1

2(m @c̄~x1m̂ !~11gm!Um~x!c~x!1 c̄ ~x!

3~12gm!Um
† ~x!c~x1m̂ !#2M c̄ ~x!c~x! D , ~3!

andUm5exp@2iAm#, M521m, b51/g2. SG is the standard
Wilson action and the hopping parameterk is given by
k51/2M . Salmhofer has shown@7# that in the strong~infi-
nite! coupling limit b50 the partition functionZL equals
that of an eight-vertex model@more precisely, a seven-vertex
model due to Eq.~5!# @23# with weights~cf. Fig. 1!:

v15z5
1

4k2
5M2, ~4!

v250, ~5!

v35v451, ~6!

v55v65v75v85h5 1
2 . ~7!

Consequently, one can write

ZL5ZL@z, 1
2 #, ~8!

ZL@z,h#5(
L

zuLu2uLuhC~L !, ~9!

where L denotes any self-avoiding loop configuration,uLu
andC(L) are the number of links and corners, respectively,

a polymer configurationL is built of, anduLu is the number
of lattice points of the latticeL. ZL@z,h# is the partition
function of a SALM with a monomer weightz and a bending
rigidity h ~the loop multiplicity/fugacity is 1 in this model!.
The same expression forZL can, of course, also be obtained
for noncompact QED2. It should be mentioned that the ther-
modynamic limit for a large class of models, to which the
SALM belongs, has been studied in@43#.

From the point of view of lattice field theory it is inter-
esting to know the phase structure of the lattice Schwinger
model. For free fermions (b5`), the critical value of the
hopping parameter readskcr(b5`)51/4. In order to pin
down the critical line forb,`, it is of particular interest to
know where it ends (b50). There is a critical point for
kcr(b50)5` because then the strong coupling Schwinger
model reduces to a six-vertex model whose behavior is
known from its exact solution@7,23#. This point, however, is
believed to be isolated and not to be the end point of the
critical line starting atkcr(`)51/4 @3#. Recently, exact stud-
ies of the partition function of the strong coupling Schwinger
model have been made on finite lattices@4,5#. It has been
found kcr(0).0.3820.39 and that the phase transition is
likely a continuous one~second order or higher! @5#. A very
recent high precision MC study has confirmed these findings
@characteristic signals for a second order phase transition at
kcr(0)50.3805(1) are found# @6#.

It is worthwhile to compare the result obtained in@4–6#
with the MC investigation of the SALM with a variable
bending rigidity undertaken by Mu¨ser and Rys@33,34# ~see
also @44# for some computational background!. Their inves-
tigation has been inspired by the generalized loop model of
Rys and Helfrich@25#. Müser and Rys@33,34# employ a
different parameter set to$z,h% which we are going to de-
scribe first. Their language is thermodynamic in spirit and
their parameter temperature and line stiffness$T,s% are in-
troduced the following way:

z5e~12s!/T, ~10!

h5e2s/T, ~11!

which in turn entails

T5
1

ln
z

h

, ~12!

s5
lnh

ln
h

z

. ~13!

For positive temperaturesT, negative values of the line stiff-
nesss correspond to values of the bending rigidityh.1
~i.e., bending preferred! and positive values ofs to h,1
~i.e., bending is costly!. The JacobianF of this coor-

FIG. 1. Vertices of the eight-vertex model and
their weights@cf. Eqs.~4!–~7!#.
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dinate transformation from$(z,h)P(0,̀ )3(0,̀ )\@(r ,r ):r
P(0,̀ )#% to $(T,s)P(0,̀ )3 R% reads

F5zhF ln
z

hG3

~14!

5
1

T3
e~122s!/T, ~15!

and has, consequently, singular lines beyond the given range
of the map. Figure 2 displays the result of Mu¨ser and Rys
@33,34# for the critical line of the loop model with line stiff-
ness and Fig. 3 displays the same information in$z,h% co-
ordinates~for further comments see the figure captions!. In
regions II and III the system at criticality is found to exhibit
Ising-like behavior while in region I some nonuniversal be-
havior is seen. For better orientation, the ordinary loop gas
(h51) result is specially shown in Figs. 2 and 3@45,46#.
One immediately recognizes that the results found for the
strong coupling Schwinger model@4–6# fit well onto the
critical line given by Müser and Rys. Moreover, the MC
result of Müser and Rys also well agrees with the exactly
known critical point for the free-fermion model (h51/A2)
to be discussed in Sec. IV. For the ordinary loop gas it has
also been found numerically@47# that critical exponents~and

amplitudes, in part! agree well with those of the Ising model.
The free-fermion model (h51/A2, see Sec. IV!, of course,
also lies in the Ising universality class. This immediately
suggests~for a further discussion see Sec. V! that in general
the SALM with a variable bending rigidity at criticality lies
in the Ising universality class~in the parameter regions II,
III !. From this we immediately infer that the strong coupling
lattice Schwinger model (h51/2) also belongs to this class.
In @5#, however, a critical exponentn.0.63 has been re-
ported for the strong coupling Schwinger model which is
quite off the Ising resultn51. The discrepancy very likely
stems from finite size effects of the small lattices with non-
square geometry investigated. These nonsquare geometry lat-
tices, however, can be exploited in other ways as we will see
in Sec. V. In agreement with the findings of Mu¨ser and Rys
@33,34#, the recent high precision MC study by Gausterer and
Lang yieldsn51 @6#.

III. THE INDEPENDENT LOOP APPROXIMATION

Inasmuch as exact expressions for the partition function
~9! for generalh are not available, analytical attempts to
understand the phase structure of the self-avoiding loop
model with a variable bending rigidity have to rely on certain
approximations. A method also applied in related situations

FIG. 3. This is the equivalent of Fig. 2 shown here
for the $z,h% coordinate system. For further explana-
tions refer to Fig. 2. Although MC results so far are not
available for region VI, it seems reasonable to expect
that the critical line drawn in region I will continue in
region VI and end atz50, h51/2 where it would meet
the end of the critical domain of the six-vertex model
(z50, h>1/2) @23#.

FIG. 2. The critical line of the self-avoiding loop model
with a variable bending rigidity as found by MC calcula-
tions on a 64364 lattice by Müser and Rys@33,34#. The
solid line interpolates~using a polynomial interpolation
scheme! between those points for which C results are avail-
able ~given by black dots and hollow circles, the degen-
eracy points51, T50 is specially emphasized by a black
half disk! @34#. The domains I–VI are mapped to the cor-
respondingly labeled domains in the$z,h% plane~see Fig.
3, boundary lines are plotted in the same style in both fig-
ures!. ff denotes the exactly known critical point
$Tcr52/(3ln2)'0.962, scr51/3% (zcr52) of the free-
fermion model (h51/A2) @40–42#. lg stands for the ordi-
nary self-avoiding loop model (h51, s50) with the criti-
cal point Tcr51.157 (zcr52.373) @45,46#. sm denotes the
critical pointkcr(0)50.38 (Tcr50.81,scr50.56,zcr51.73)
of the strong coupling Schwinger model (h51/2) as found
in @4–6#.
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in condensed matter physics and cosmic string physics is the
so-called ‘‘independent loop approximation’’@17–22,48,49#.
The approximation is approached by writing the partition
function ZL@z,h# as a sum over partition functions with a
fixed numberl of ~polymer! loops:

ZL@z,h#5zuLu(
l 50

`

ZL@ l ,z,h#. ~16!

The approximation now made is to express thel -loop parti-
tion function ZL@ l ,z,h# exclusively by means of the single
loop partition functionZL@1,z,h#:

ZL@ l ,z,h#5
1

l !
~ZL@1,z,h#! l , ~17!

leading to

ZL@z,h#5zuLueZL[1,z,h] . ~18!

This approximation can be expected to give reasonable re-
sults for those parameter regions where the loop system is
sufficiently dilute @filling on average only a certain~small!
fraction ~say,,0.5) of the latticeL#. According to Eq.~18!
the investigation now may concentrate on the single loop
partition functionZL@1,z,h#. One can easily convince one-
self that in the independent loop approximation the average
number of loops in the system is given by the value of the
single loop partition function@18, Eq.~56!#. The free energy
density f reads, in the independent loop approximation
(bT51/T),

bTf ~z,h!52 lim
uLu→`

1

uLu
lnZL@z,h#

52 lnz2 lim
uLu→`

ZL@1,z,h#

uLu
. ~19!

To proceed further, the single loop partition function can
now be written as sum over the loop length:

ZL@1,z,h#5 (
k51

`

z22kZL@2k,h#, ~20!

whereZL@2k,h# is the conformational partition function of
a single loop of length 2@21#. ~Here, we already have taken
into account that on a square lattice the length of a loop is
always even; unless, of course, toroidal boundary conditions
on a lattice with an odd number of sites in a given direction
are used.! The conformational partition function is then rep-
resented as sum over all single loop configurationsL with
length 2k:

ZL@2k,h#5 (
L,uLu52k

hC~L !5 (
C50

2k

N~2k,C!hC, ~21!

where N(2k,C) is the number of self-avoiding loops with
length 2k andC corners.

Let us start with the consideration of the ordinary loop
model (h51). In this caseZL@2k,1# denotes the total num-
ber of possibilities to place a self-avoiding loop with length

2k on the latticeL. It can be expressed by means of the
number p2k of 2k-step self-avoiding loops per lattice site
which is a standard quantity that has been investigated in the
literature:

p2k5 lim
uLu→`

ZL@2k,1#

uLu
~22!

The n→0 limit of the lattice O(n) spin model provides us
now just with the information necessary to study the critical
behavior@24,26# ~see also, e.g.,@28#, Sec. 2!. For largek, p2k
reads@29#

p2k ;
k→`

Bm2k@2k#22n211•••. ~23!

Here,m denotes the connective constant~effective coordina-
tion number! for the self-avoiding walk problem on the given
latticeL @50# andB is some lattice-dependent constant. The
~universal! critical exponentn is believed to be given in two
dimensions byn5 3

4 ~obtained on a honeycomb lattice!
@51,52#. Inserting Eq.~23! into Eq. ~20!, one finds

ZL@1,z,1#5uLuB(
k51

`

@2k#25/2S m

z D 2k

. ~24!

This is a justified approximation because we are mainly in-
terested in the critical domain which is related to thek→`
behavior. From Eq.~24! one easily recognizes that the criti-
cal point is given byzcr5m. Most recent~precise! estimates
for m on the square lattice can be found in@53–55#. We keep
here only a few digits and writem52.638. Consequently, we
havezcr52.638 (Tcr51.031) which is to be compared with
the numerical resultzcr52.373 (Tcr51.157) @45,46#. Equa-
tion ~24! inserted into Eq.~19! gives immediately the free
energy and one recognizes that the phase transition at
zcr5m52.638 found within the independent loop approxi-
mation is of second order. Using~@56,57#!

F~x,k!5 (
n51

`
xn

nk
5G~12k!~2 lnx!k21

1 (
n50

`

z~k2n!
~ lnx!n

n!
, ~25!

one reobtains for the critical exponent of the specific heata
the hyperscaling relationa5222n entailing in the indepen-
dent loop approximationa51/2 which is to be confronted
with the expected Ising resulta50 @47#.

We are now prepared to study the general case with a
variable bending rigidityh. First, we have to find an appro-
priate expression for the numberN(2k,C) of self-avoiding
loops with length 2k and C corners. Let us count first the
number of random nonbacktracking walks~i.e., nonclosed
paths! of length 2k with C corners@21#. It should be stressed
that the following argument does not depend on the dimen-
sion of the lattice. There are 2k21 vertices available theC
corners can be placed at, i.e., there are (C

2k21) possibilities to
do so. To each prospective corner existh5(2d21)21
ways of bending whered is the dimension of a~hyper!cubic
lattice ~in our case of a square latticed52). (2d21) here is
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the nonbacktracking dimension of the lattice and it has to be
diminished by 1 corresponding to the straight line choice.
Consequently, we find

NNB~2k,C!5uLuS 2k21

C D hC. ~26!

Using Eq.~21!, the corresponding~nonbacktracking! confor-
mational partition function reads then

ZL@2k,h#NB5uLu@11hh#2k21. ~27!

We now obtain an approximation to the 2k-step self-
avoiding walk ~SAW! conformational partition function by
simply replacing h5(2d21)@121/(2d21)# by
h5m̄@121/(2d21)# ~this is based on the assumption that
the self-avoidance constraints effectively encoded inm̄ are
independent of whether propagation is straight or bent!

where m̄ is a certain effective coordination number to be
determined in a moment. This yields in our case

ZL@2k,h#SAW5uLuU~2k!F11
2m̄h

3
G2k21

. ~28!

The additional factorU(2k) also to be determined below
takes care of some additional length dependence which
might show up in the transition from nonbacktracking to
SAW. Specializing Eq.~28! to h51 we obtain the total
number of SAW of length 2k on the square lattice which has
to be confronted with the standard expectation@29# for large
k

c2k5 lim
uLu→`

ZL@2k,1#SAW

uLu
;

k→`
Am2k@2k#g211•••,

~29!

where A is some lattice-dependent constant andg543/32
@51,52#. From Eq.~29! we immediately find

m̄5 3
2 ~m21!, ~30!

U~2k!5Am@2k#g21. ~31!

Now, we need to know the conformational partition func-
tion for the self-avoiding loop problem. In order to be able to
make further progress let us assume thatN(2k,C) for self-
avoiding loops is just a certain fractionM (2k) of
NSAW(2k,C) at least for largek independent of the number
of cornersC. According to Eq.~21!, we can then write

ZL@2k,h#5M ~2k!ZL@2k,h#SAW, ~32!

which reads, after having taken into account Eqs.~28!, ~30!,
~31!,

ZL@2k,h#5uLuM ~2k!Am@11~m21!h#2k21@2k#g21.
~33!

M (2k) is the fraction to be determined. We here simply
ignore the fact that for any loop the number of corners is
even, necessarily. This is justified for the study of thek→`
behavior we are primarily interested in. Forh51 we have

already displayed an expression@Eq. ~23!# which now serves
as reference expression to determineM (2k). We obtain

M ~2k!5
B

A
@2k#22n2g ~34!

leading to

ZL@1,z,h#5uLu
Bm

@11~m21!h#

3 (
k51

`

@2k#25/2S 11~m21!h

z D 2k

. ~35!

Consequently, the critical line is found to be

hcr~zcr!5
~zcr21!

~m21!
. ~36!

This translates into the$T,s% coordinate system as

scr~Tcr!5Tcrln@e1/Tcr2m11#. ~37!

Applying Eq.~25! to Eq.~35! yields, for arbitraryh, a51/2.
From the above equations we obtain for the strong coupling
Schwinger modelzcr51.819 (Tcr50.774, scr50.537). We
find for the critical hopping parameter

kcr~0!5
1

A2~m11!
50.371, ~38!

which is to be compared with the result of computer studies
kcr(0).0.3820.39 @33,34, 4–6#.

It should be emphasized that the result of our approximate
consideration@Eq. ~37!# entailsscr→1 for Tcr→0 (hcr→0

FIG. 4. The critical line according to the results of the indepen-
dent loop approximation~37! ~dotted line! and of the free-fermion
model related approach~52! ~dashed line! in comparison with the
MC result~solid line! of Müser and Rys@33,34#. For further expla-
nations refer to Fig. 2.
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for zcr→1). This is well in line with the expectation spelled
out in @33#. In the limit h→0, the SALM degenerates into an
ensemble of straight lines~on a torus! and it can, therefore,
be compared with certain limits of other models encompass-
ing the same limit. In Sec. 2 of@58#, it has been found that
for the straight line systemz51 is the critical point. This is
supported by numerical studies reported in@59# ~see, in par-
ticular, Fig. 3 therein!. Corresponding exact information is
furthermore available from the solution of the five-vertex
model @60# @see Sec. IV, in particular, Eq.~30! and Fig. 1
therein#. Finally, it seems to be interesting that the indepen-
dent loop approximation delivers the correct result for the
critical point of the SALM in the limith→0.

The critical line@Eqs. ~36! and ~37!# obtained within the
independent loop approximation is plotted in Figs. 4 and 5.
One recognizes that the critical line found analytically agrees
qualitatively quite well with the result of the MC calculation
of Müser and Rys@33,34#. However, it is clear that the va-
lidity of the independent loop approximation is confined to
the low ~polymer! loop density domain. The high density
result of Müser and Rys@33,34# displayed in region I of Figs.
2 and 3 cannot be obtained within the present scheme. It is
also well known@17,48# that while within the independent
loop approximation the critical line can be determined in a
qualitatively correct way, results for critical exponents are
less accurate. This also applies to our case as we have seen
above. While we would have expected, e.g., for the critical
exponenta the Ising result (a50; at least forh51 @47#!
within the independent loop approximation we seea51/2.
Finally, it should also be mentioned that the relative simplic-
ity of the independent loop approximation has its price be-
cause so far no way of systematically improving it is known
and one consequently has no quantitative control over the
approximation made. Perhaps this drawback is offset by the
applicability of the approximation to systems in any dimen-
sion.

IV. THE EXACT SOLUTION OF THE SELF-AVOIDING
LOOP MODEL WITH A BENDING RIGIDITY

h51/A2 AND ITS USE

While in general the self-avoiding loop model~SALM!
with a variable bending rigidity~which is equivalent to a
seven-vertex model due tov250) cannot be studied exactly
so far, there exists an exact solution to it forh51/A2 first
investigated by Priezzhev@40# ~see also@41#!. This solution
was later rediscovered by Blum and Shapir@42# who appar-
ently were unaware of the earlier work of Priezzhev. The
solution relies on the general study of the eight-vertex model
by Fan and Wu@38,39#. They found that the eight-vertex
model is exactly solvable if the free-fermion condition

v1v21v3v45v5v61v7v8 ~39!

is satisfied~cf. Fig. 1 for the labeling of the vertices!. Insert-
ing Eqs.~4!–~7! into Eq. ~39! (h taken arbitrary here!, one
immediately finds that the free-fermion condition is satisfied
for h51/A2 (T52s/ ln2). The partition function for the
SALM with a bending rigidityh51/A2 has been found in
@40,42# by standard methods@61,62#. The free energy density
f reads

bTf ~z,1/A2!52
1

8p2E0

2p

duE
0

2p

df ln@21z212zcosu

12zcosf12 cosu cosf#. ~40!

A second order phase transition occurs forzcr52
@Tcr52/(3 ln2)50.962,scr51/3# which will be of main inter-
est to us. There is, of course, also a critical point atz50
related to the exactly solvable six-vertex model@23,7#. Be-
cause the system can be represented by means of free fermi-
ons @62# the SALM with a bending rigidityh51/A2 lies in
the Ising universality class@42#. In accordance with this it
has been shown~for v2 chosen arbitrarily! that the partition
function of the free-fermion model can be expressed in terms
of that of the regular Ising model@63#. It finally deserves
mention that the result of the MC calculation of Mu¨ser and
Rys @33,34# is in complete agreement with the exact solution
of the free-fermion model~cf. Figs. 2 and 3!.

The above exact solution lying on the critical line of the
SALM with a variable bending rigidity is quite useful be-
cause this way one may take advantage of universality argu-
ments to draw conclusions about the model at criticality for a
fairly wide range of the bending rigidityh. This will be
discussed further in Sec. V. Here, we will study the approxi-
mate calculation of the critical line in a neighborhood of the
model for h51/A2. This discussion is in a certain sense a
generalization of that given in@41,40#. Let us write the par-
tition function ~9! as

ZL@z,h#5(
l 50

uLu

zuLu22l (
L,uLu52l

hC~L ! ~41!

5(
l 50

uLu

zuLu22l (
L,uLu52l

(
k50

`
1

k!
@C~L !lnh#k ~42!

FIG. 5. This is the equivalent of Fig. 4 shown here for the$z,h%
coordinate system and relating to Eqs.~36! ~dotted line! and ~51!
~dashed line!.
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5(
l 50

uLu

zuLu22l (
k50

`
@ lnh#k

k!
^C~L !k&2l . ~43!

Here,

^C~L !k&2l5 (
L,uLu52l

C~L !k. ~44!

One may now expresŝC(L)&2l as

^C~L !&2l5C̄2lN~2l !, ~45!

C̄2l52lnC~2l !. ~46!

N(2l )5^1&2l denotes the number of~multi!loop configura-
tions of total length 2l on the lattice L and nC(2l ),
0<nC(2l )<1, stands for the average relative density of cor-
ners in the considered loop ensemble of total length 2l . It is
a purely geometrical quantity as it does not depend onh.
The following, of course, holds for the higher moments ofC:

0<^C~L !k&2l<~2l !k N~2l !. ~47!

One can now write

ZL@z,h#5zuLu (
l 50

uLu

N~2l !FhnC~2l !

z G2l

3F11
^@C~L !2C̄2l #

2&2l

2N~2l !
~ lnh!21•••G ,

~48!

where the ellipsis stands for a series in higher order correla-
tion functions of the corner numberC and lnh. The critical
behavior of the system is related to largel . For l→`, nC

tends to some valuen̄C and consequently points (z1 ,h1),
(z2 ,h2) on the critical line not too far away from each other
should obey to leading approximation the equation

h1
n̄C

z1
5

h2
n̄C

z2
. ~49!

The contribution of correlation functions ofC should be ex-
pected to be of minor importance in Eq.~48!, leading to
corrections to the leading behavior only. Inserting into Eq.
~49! the exactly known critical point (z,h)5(2,1/A2) of the
free-fermion model leads in a neighborhood of it to the equa-
tion for the critical line:

hcr~zcr!522~ n̄C12!/2n̄C zcr
1/n̄C. ~50!

The only unknown quantity in this expression is the average
relative corner densityn̄C . Its valuenC(2l→`) is related to
the high density polymer limit which is reached forz→0.
n̄C has been calculated in@40,41# for the free-fermion model
and found to have the value 1/2. Expressions for the corre-
lation functions ofC for l→` can also be obtained along the
same lines by tedious, but standard methods~@64,65#; the
latter is the English original of Ref. 16 in@40#!. So, we end
up with the following equation for the critical line of the

SALM with a variable bending rigidity in the neighborhood
of the free-fermion point~cf. also Figs. 4 and 5!:

hcr~zcr!5225/2zcr
2 . ~51!

This equation reads, in$T,s% coordinates,

Tcr~scr!5
2~22scr!

5ln2
. ~52!

Consequently, we obtain for the strong coupling Schwinger
model zcr523/4'1.682 @Tcr54/(7ln2)'0.824, scr54/7
'0.571#. This yields, for the critical hopping parameter,

kcr~0!52211/8'0.386. ~53!

We see~cf. also Figs. 4 and 5! that the approximation based
on the exactly solvable free-fermion model yields a numeri-
cal value of the critical hopping parameter fairly close to the
result found in computer studieskcr(0).0.3820.39
@33,34,4–6#. As mentioned above, systematic improvements
can be obtained by taking into account correlation functions
of C. This apparently is necessary as one learns from Figs. 4
and 5 if one wants to find the critical line beyond the region
defined by the critical points of the ordinary loop model and
the strong coupling Schwinger model, respectively.

V. DISCUSSION AND CONCLUSIONS

Let us first have a look at the larger picture emerging for
the critical behavior of the self-avoiding loop model~SALM!
with a variable bending rigidity. There is one point on the
critical line known exactly from the solution of the free-
fermion model (h51/A2, zcr52) @40–42#. For this model it
is established that the phase transition is Ising-like, i.e., the
model experiences a second order phase transition with ex-
actly the same critical exponents as the regular Ising model.
By the argument of universality we may conclude that neigh-
boring models which lie on the same critical line exhibit the
same behavior. This, in particular, concerns the ordinary
loop model (h51) and the strong coupling Schwinger
model (h51/2). For the ordinary loop model this has been
confirmed by MC investigations in the past@47#. For the
strong coupling Schwinger model this consideration specifies
the previously unknown character of the phase transition and
supports the recent suggestion that the transition might be a
continuous one@5#. The very recent high precision MC study
performed by Gausterer and Lang has confirmed this insight
@6#.

In order to extend the understanding of the SALM with a
variable bending rigidity at criticality let us consider the cen-
tral chargec of the corresponding conformal field theory
~CFT!. Helpful information can be obtained most easily for
the free-fermion model considered in Sec. IV. First, it seems
worthwhile mentioning that the regular Ising model can be
understood as a special free-fermion model@62#. A prelimi-
nary investigation along the lines given for the Ising model
in @66# indicates that the SALM with a bending rigidity
h51/A2 can be represented at the critical pointzcr52 by
one massless~continuum! Majorana fermion~as in the spe-
cial case of the Ising model just one-half of the fermionic
modes needed to express the partition function becomes
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massless at the critical point!. Consequently, this suggests
that the critical SALM at the free-fermion point is equivalent
to a c51/2 CFT. The central charge should be expected not
to change continuously on the critical line in the neighbor-
hood of the free-fermion model; therefore CFT’s correspond-
ing to the SALM with a variable bending rigidity should all
exhibit c51/2 ~along the critical line in the regions II and
III !. This of course entails that the strong coupling
Schwinger model at criticality should be equivalent to a
c51/2 CFT. Consequently, in accordance with Zamolod-
chikov’s c theorem@67,68#, zÞ0 is related to a flow from
the six-vertex model (z50) havingc51 @69,70# towards a
model with c51/2 ~as discussed in general terms by Salm-
hofer @7#; more precisely, this applies forh>1/2, where the
six-vertex model is critical@23#!. This view is supported by
still another argument stemming from the SALM with no
bending rigidity~i.e., h51). As by universality the central
charge should not depend on the lattice, that the SALM is
defined on, we may rely on results obtained for the SALM
on the honeycomb lattice~see, e.g.,@71#!. The SALM on the
honeycomb lattice can be viewed as a O(n51) model which
has a central chargec51/2 @72# in agreement with the above
discussion. The consideration of the O(n) model on the
square lattice confirms this result@73#.

We are now going to test the above insight by calculating
the central charge for the strong coupling Schwinger model.
This can be done most easily by considering the model on a
strip of widtha and lengthb→` @74,75#. The central charge
is related to the partition function~on a torus! by the formula
@up to higher order terms in 1/a; f is the ~bulk! free energy
density on the infinite plane#

lim
b→`

lnZL~a3b!@zcr,1/2#

b
5a f~zcr,1/2!1c

p

6

1

a
. ~54!

We, however, will approach the study of the central charge
of the strong coupling Schwinger model by means of the
exact partition functions calculated on finite lattices in
@4,5,76#. In Fig. 6 we have plotted the function

c~z!5
a

b

6

p
$ lnZL~a3b!@z,1/2#2ab f~z,1/2!% ~55!

for different tori (a52,3,4, for the values ofb used see Fig.
6! dependent onk @z5(2k)22 has been inserted#. f (z,1/2)
has been calculated by means of the 838 ~solid lines! @4,76#
and the 636 ~dashed lines! @76# lattice partition functions,
respectively. For the moment let us concentrate on the dis-
cussion of the results obtained by means of the bulk free
energy density on the 838 torus ~solid lines!. For suffi-
ciently largeb the functionc(z) should be expected to ap-
proach the value of the central charge at the critical point.
However, one has to be aware of the fact that on the very
narrow ~with respect toa) tori considered, massless and
massive fields can contribute comparable amounts to the Ca-
simir energy. Inasmuch as the central charge is calculated by
means of Eqs.~54! and~55! from the Casimir energy results
obtained from very narrow tori may turn out to be mislead-
ing. In part, this is what we observe from Fig. 6. The result
for thea52 torus rather suggestsc51 ~or some value close
to it!; however, the torus is so narrow that massless and
massive fields contribute comparably to the Casimir energy.
Consequently, in agreement with our expectationc51/2 for
the wider a53 torus we already observe a much smaller
value of c(z) at the critical point and fora54 some value
close to 1/2 is found. However, it turns out that the sizes of
the tori for which the exact partition functions have been
calculated so far are too small to allow any final conclusions
for the central charge of the strong coupling Schwinger
model at criticality. In particular, this applies to the square
lattices the bulk free energy density is derived from. From
Fig. 6 one easily recognizes that the curves related to the
636 bulk reference system~dashed curves! differ quite sig-
nificantly from those calculated for the 838 system. Unless
numerical stability forc(z) near the critical point is obtained,
no final conclusion can be drawn. Therefore, only partition
functions calculated on considerably larger lattices will allow
us to numerically test the predictionc51/2 in a reliable way.

To conclude, the study of the self-avoiding loop model
with a variable bending rigidity presented in this paper en-
hances the understanding of the critical behavior of the
strong coupling Schwinger model with Wilson fermions. We
find that a second order phase transition, which lies in the
Ising model universality class, takes place at some finite
value of the hopping parameterkcr(0). Using certain ap-
proximate analytic methods the value of the critical hopping
parameter is confirmed to lie atkcr.0.3820.39 in accor-

FIG. 6. The functionc @see Eq.~55!# in de-
pendence onk(0). Thesolid lines are the result
related to the bulk free energy density
f @(2k)22,1/2# calculated on a 838 lattice while
the dashed lines stand for the results related to the
636 lattice free energy density. The followingb
values for thea3b tori have been used~curves in
order from top to bottom!; a52, b532,48,64
~practically one line!; a53, b516,24,32,48;
a54, b516,24,32@76#. The value ofc at the
critical point kcr(0).0.3820.39 has to be com-
pared with the expectation for the central charge
~for a discussion see the main text!.
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dance with recent numerical investigations@4–6#. Certain ar-
guments considered suggest that the strong coupling
Schwinger model at criticality is equivalent to ac51/2 CFT.
Finally, it should be mentioned that the discussion of the
self-avoiding loop model with a variable bending rigidity
seems to have a certain significance beyond the one-flavor
Schwinger model. Recent investigations indicate that for the
qualitative understanding of the critical behavior of the gen-
eralNf-flavor strong coupling Schwinger model with Wilson
fermions the self-avoiding loop model with a bending rigid-
ity h522Nf might be relevant@77#.

From a technical point of view, the present paper studies
the application of the independent loop approximation to the
qualitative and in part quantitative exploration of the phase
structure of the self-avoiding loop model with a variable
bending rigidity in two dimensions. Comparison with known
numerical results@33,34# shows that this method delivers a
fairly correct picture for sufficiently low~polymer! loop den-
sities. This is encouraging because the method is equally
applicable to higher dimensions, while the analytic approach
based on the exactly solvable free-fermion model presented

in Sec. IV is at least in part specific to two dimensions. This
suggests that the independent loop approximation might suc-
cessfully be applied also to analogous systems in higher di-
mensions where it can be expected to become even more
accurate~e.g., to strong coupling QCD in four dimensions
where the critical hopping parameter has recently been stud-
ied by other methods@78#!.
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@33# H. E. Müser and F. S. Rys, Z. Phys. B61, 153 ~1985!.
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