ρ − γ mixing, the \(e^+ e^- \) vs \(\tau \) puzzle and the muon \(g − 2 \)

Fred Jegerlehner
HU Berlin/DESY Zeuthen,
fjeger@physik.hu-berlin.de

Theorie Seminar, DESY Hamburg, Mai 2, 2011

Abstract
The energy dependence of the \(ρ − γ \) mixing in the \(2 \times 2 \) \(γ − ρ \) propagator matrix, is shown to be able to account for the \(e^+ e^- \) vs. \(\tau \) spectral function discrepancy. Consequences for the muon \(g − 2 \) are discussed.

Outline of Talk:

- The τ vs. e^+e^- problem (as known)
- A minimal model: VMD + sQED
- $F_\pi(s)$ with $\rho - \gamma$ mixing at one-loop
- Applications: a_μ and $B_{\pi\pi^0}^{\text{CVC}} = \Gamma(\tau \rightarrow \nu_\tau \pi\pi^0)/\Gamma_\tau$
- Summary and Conclusions
- Future
The τ vs. e^+e^- problem

Concerns: calculation of hadronic vacuum polarization from appropriate hadron production data.

- A good idea: enhance e^+e^-–data by isospin rotated/corrected τ–data + CVC

ALEPH–Coll., (OPAL, CLEO), Alemany, Davier, Höcker 1996,
Belle–Coll. Fujikawa, Hayashii, Eidelman 2008
\[\tau^- \rightarrow X^- \nu_\tau \quad \leftrightarrow \quad e^+ e^- \rightarrow X^0 \]

where \(X^-\) and \(X^0\) are hadronic states related by isospin rotation. The \(e^+ e^-\) cross-section is then given by

\[
\sigma^{I=1}_{e^+e^- \rightarrow X^0} = \frac{4\pi\alpha^2}{\sqrt{s}} \frac{\beta_0^3(s)}{\beta_\pi^3(s)} v_{1,X^-}, \quad \sqrt{s} \leq M_\tau
\]

in terms of the \(\tau\) spectral function \(v_1\).

- mainly improves the knowledge of the \(\pi^+\pi^-\) channel (\(\rho\)-resonance contribution)

- which is dominating in \(a_\mu^{\text{had}}\) (72%)

\[
I = 1 \sim 75\% ; \quad I = 0 \sim 25\% \quad \tau\text{-data cannot replace } e^+ e^- \text{-data}
\]

\[
\delta a_\mu : 15.6 \times 10^{-10} \rightarrow 10.2 \times 10^{-10}
\]

\[
\delta \Delta \alpha : 0.00067 \rightarrow 0.00065 \quad (ADH1997)
\]
Data: ALEPH 97, ALEPH 05, OPAL, CLEO and most recent measurement from Belle (2008):

\[|F_\pi|^2 \]

\[(M_{\pi\pi}^0)^2 \quad (\text{GeV}/c^2)^2 \]
\(\varepsilon^+ \varepsilon^- \text{data}^* = \text{data corrected for isospin violations: In } \varepsilon^+ \varepsilon^- \text{ (neutral channel)} \quad \rho - \omega \)

mixing due isospin violation be quark mass difference \(m_u \neq m_d \Rightarrow \)

\(I=0 \) component; to be subtracted for comparison with \(\tau \) data

- Use Gounaris-Sakurai ansatz

\[
F_\pi(s) = \frac{\text{BW}_{\rho(770)}^\text{GS}(s) \cdot \left(1 + \frac{s}{M_\omega^2} \text{BW}_{\omega}(s)\right) + \beta \text{BW}_{\rho(1450)}^\text{GS}(s) + \gamma \text{BW}_{\rho(1700)}^\text{GS}(s)}{1 + \beta + \gamma},
\]

- Fit \(\varepsilon^+ \varepsilon^- \)-data for \(|F_\pi(s)|^2 \Rightarrow \delta_{\rho \omega} \) (complex) and set \(\delta = 0 \) to obtain \(|F_{\pi I=1}(s)|^2 \)

CMD-2 data for \(|F_\pi|^2 \) in \(\rho - \omega \) region together with Gounaris-Sakurai fit. Left before subtraction right after subtraction of the \(\omega \).

\(I=0 \) component to be added to \(\tau \) data for calculating \(a_{\mu}^{\text{had}} \)!
Other isospin-breaking corrections Cirigliano et al. 2002, López Castro el al. 2007

Left: Isospin-breaking corrections G_{EM}, FSR, $\beta_0^3(s)/\beta_3^3(s)$ and $|F_0(s)/F_-(s)|^2$.

Right: Isospin-breaking corrections in $I = 1$ part of ratio $|F_0(s)/F_-(s)|^2$:
- π mass splitting $\delta m_\pi = m_{\pi^\pm} - m_{\pi^0}$,
- ρ mass splitting $\delta m_\rho = m_{\rho^\pm} - m_{\rho^0}$, and
- ρ width splitting $\delta \Gamma_\rho = \Gamma_{\rho^\pm} - \Gamma_{\rho^0}$.
New isospin corrections applied shift in mass and width [as advocated by S. Ghozzi and FJ in 2003!!] plus changes [López Castro, Toledo Sánchez et al 2007] below the ρ which Davier et al say are not understood! The discrepancy now substantially reduced but with the KLOE data persists. New B\bar{B}ABAR radiative return $\pi\pi$ spectrum in much better agreement, in particular with Belle τ spectrum!

$e^+e^- vs \tau$ spectral functions: $|F_{ee}|^2/|F_{\tau}|^2 - 1$ as a function of s. Isospin-breaking (IB) corrections are applied to τ data with its uncertainties included in the error band.
CVC prediction of \(B_{\pi\pi^0} \)

normalization of BELLE, CLEO and OPAL

not fixed by the experiment itself

The measured branching fractions for \(\tau^- \rightarrow \pi^- \pi^0 \nu_\tau \) compared to the predictions from the \(e^+e^- \rightarrow \pi^+\pi^- \) spectral functions (after isospin-breaking corrections). (Named \(e^+e^- \) results for \(0.63 - 0.958 \)GeV). The long and short vertical error bands correspond to the \(\tau \) and \(e^+e^- \) averages of \(25.42 \pm 0.10 \) and \(24.76 \pm 0.25 \), respectively.
Possible origin of problems:

☐ Radiative corrections involving hadrons fully under control?

☐ IB in parameter shifts: \(m_{\rho^+} - m_{\rho^0}, \Gamma_{\rho^+} - \Gamma_{\rho^0} \) fully known?

Key problem: on basis of commonly used Gounaris-Sakurai type parametrizations

\[e^+e^- \text{ vs. } \tau \text{ fit with same formula } \Rightarrow \text{ differ in parameters only: NC vs. CC process} \]

\[\delta M_{\rho}, \delta \Gamma_{\rho}, \text{ mixing coefficients etc.} \]

Other possible source: do we really understand quantum interference?

- \(e^+e^-: |F_{\pi}^{(e)}(s)|^2 = |F_{\pi}^{(e)}(s)[I = 1] + F_{\pi}^{(e)}(s)[I = 0]|^2 \) what we need and measure

- \(\tau: \ |F_{\pi}^{(\tau)}(s)[I = 1]|^2 \) measured in \(\tau \)-decay

- \(ee + \tau: |F_{\pi}^{(e)}(s)|^2 \approx |F_{\pi}^{(e,\tau)}(s)[I = 1]|^2 + |F_{\pi}^{(e)}(s)[I = 0]|^2 \) ??? usual approximation

Need \underline{theory} \rightarrow \text{ specific model for the complex amplitudes}
A minimal model: VMD + sQED

Effective Lagrangian
\[\mathcal{L} = \mathcal{L}_\gamma + \mathcal{L}_\pi \]

\[\mathcal{L}_\pi = D_\mu \pi^+ D^{+\mu} \pi^- - m_\pi^2 \pi^+ \pi^- ; \quad D_\mu = \partial_\mu - i e A_\mu - ig_\rho \pi \pi \rho_\mu \]

\[\mathcal{L}_\gamma = -\frac{1}{4} F_\mu \nu F^{\mu \nu} - \frac{1}{4} \rho_\mu \nu \rho^{\mu \nu} + \frac{M_\rho^2}{2} \rho_\mu \rho^{\mu} + \frac{e}{2 g_\rho} \rho_\mu F^{\mu \nu} \]

Self-energies: pion loops to photon-rho vacuum polarizations

\[-i \Pi^{\mu \nu}_{(\pi)}(q) = \text{bare } \gamma - \rho \text{ transverse self-energy functions} \]

\[\Pi_{\gamma\gamma} = \frac{e^2}{48 \pi^2} f(q^2) , \quad \Pi_{\gamma\rho} = \frac{eg_\rho \pi \pi}{48 \pi^2} f(q^2) \quad \text{and} \quad \Pi_{\rho\rho} = \frac{g_\rho^2 \pi \pi}{48 \pi^2} f(q^2) , \]
Propagators = inverse of symmetric 2×2 self-energy matrix

\[
\hat{D}^{-1} = \begin{pmatrix}
q^2 + \Pi_{\gamma\gamma}(q^2) & \Pi_{\gamma\rho}(q^2) \\
\Pi_{\gamma\rho}(q^2) & q^2 - M_{\rho}^2 + \Pi_{\rho\rho}(q^2)
\end{pmatrix}
\]

inverted \Rightarrow

\[
D_{\gamma\gamma} = \frac{1}{q^2 + \Pi_{\gamma\gamma}(q^2) - \frac{\Pi_{\gamma\rho}^2(q^2)}{q^2 - M_{\rho}^2 + \Pi_{\rho\rho}(q^2)}}
\]

\[
D_{\gamma\rho} = \frac{-\Pi_{\gamma\rho}(q^2)}{(q^2 + \Pi_{\gamma\gamma}(q^2))(q^2 - M_{\rho}^2 + \Pi_{\rho\rho}(q^2)) - \Pi_{\gamma\rho}^2(q^2)}
\]

\[
D_{\rho\rho} = \frac{1}{q^2 - M_{\rho}^2 + \Pi_{\rho\rho}(q^2) - \frac{\Pi_{\gamma\rho}^2(q^2)}{q^2 + \Pi_{\gamma\gamma}(q^2)}}
\]

Resonance parameters \Leftrightarrow location s_P of the pole of the propagator
\[s_P - m_{\rho_0}^2 + \Pi_{\rho_0\rho_0}(s_P) - \frac{\Pi_{\gamma\rho_0}^2(s_P)}{s_P + \Pi_{\gamma\gamma}(s_P)} = 0 , \]

with \(s_P = \tilde{M}_{\rho_0}^2 \) complex.

\[\tilde{M}_{\rho}^2 \equiv \left(q^2\right)_{\text{pole}} = M_{\rho}^2 - i \, M_{\rho} \, \Gamma_{\rho} \]

Diagonalization \(\Rightarrow \) physical \(\rho \) acquires a direct coupling to the electron

\[\mathcal{L}_{\text{QED}} = \bar{\psi}_e \gamma^\mu (\partial_\mu - i e_b \, A_{b\mu}) \psi_e \]

\[\downarrow \]

\[\mathcal{L}_{\text{QED}} = \bar{\psi}_e \gamma^\mu (\partial_\mu - i e \, A_\mu + i g_{\rho e e} \rho_{\mu}) \psi_e \]

with \(g_{\rho e e} = e (\Delta_\rho + \Delta_0) \), where in our case \(\Delta_0 = 0 \).
The $e^+e^- \rightarrow \pi^+\pi^-$ matrix element in sQED is given by

$$M = -i e^2 \bar{v} \gamma^\mu u (p_1 - p_2)_\mu F_\pi(q^2)$$

with $F_\pi(q^2) = 1$. In our extended VMD model we have the four terms

$$F_\pi(s) \propto e^2 D_{\gamma\gamma} + e g_{\rho\pi\pi} D_{\gamma\rho} - g_{\rho\rho} e D_{\rho\gamma} - g_{\rho\rho} g_{\rho\pi\pi} D_{\rho\rho},$$

Diagrams contributing to the process $e^+e^- \rightarrow \pi^+\pi^-$.
Properly normalized (VP subtraction: $e^2(s) \rightarrow e^2$):

$$F_\pi(s) = \left[e^2 D_{\gamma\gamma} + e (g_{\rho\pi\pi} - g_{\rho\pi\pi}) D_{\gamma\rho} - g_{\rho\pi\pi} D_{\rho\pi} \right] / \left[e^2 D_{\gamma\gamma} \right]$$

Typical couplings

$g_{\rho\pi\pi}^{\text{bare}} = 5.8935$, $g_{\rho\pi\pi}^{\text{ren}} = 6.1559$, $g_{\rho\pi\pi} = 0.018149$, $x = g_{\rho\pi\pi}/g_{\rho} = 1.15128$.

We note that the precise s-dependence of the effective ρ-width is obtained by evaluating the imaginary part of the ρ self-energy:

$$\text{Im} \Pi_{\rho\rho} = \frac{g_{\rho\pi\pi}^2}{48 \pi} \beta_\pi^3 s \equiv M_\rho \Gamma_\rho(s),$$

which yields

$$\Gamma_\rho(s)/M_\rho = \frac{g_{\rho\pi\pi}^2}{48 \pi} \beta_\pi^3 \frac{s}{M_\rho^2} \quad ; \quad \Gamma_\rho/M_\rho = \frac{g_{\rho\pi\pi}^2}{48 \pi} \beta_\rho^3 \quad ; \quad g_{\rho\pi\pi} = \sqrt{48 \pi \Gamma_\rho / (\beta_\rho^3 M_\rho)}.$$
In our model, in the given approximation, the on ρ-mass-shell form factor reads

$$F_\pi(M_\rho^2) = 1 - i \frac{g_{pee} g_{\rho\pi\pi}}{e^2} \frac{M_\rho}{\Gamma_\rho}; \quad |F_\pi(M_\rho^2)|^2 = 1 + \frac{36}{\alpha^2 \beta_\rho^3 \Gamma_\rho} \left(\Gamma_{ee} \right),$$

$$\Gamma_{pee} = \frac{1}{3} \frac{g_{pee}^2}{4\pi} M_\rho; \quad g_{pee} = \sqrt{12\pi\Gamma_{pee}/M_\rho}.$$

Compare: Gounaris-Sakurai (GS) formula

$$F^{GS}_\pi(s) = \frac{-M_\rho^2 + \Pi^{\text{ren}}_{\rho\rho}(0)}{s - M_\rho^2 + \Pi^{\text{ren}}_{\rho\rho}(s)}; \quad \Gamma^{GS}_{\rho ee} = \frac{2\alpha^2 \beta_\rho^3 M_\rho^2}{9 \Gamma_\rho} \left(1 + d\Gamma_\rho/M_\rho \right)^2.$$

GS does not involve g_{pee} resp. Γ_{pee} in a direct way, as normalization is fixed by applying an overall factor $1 + d\Gamma_\rho/M_\rho \equiv 1 - \Pi^{\text{ren}}_{\rho\rho}(0)/M_\rho^2 \approx 1.089$ to enforce $F_\pi(0) = 1$ (in our approach “automatic” by gauge invariance).
The interference of terms in $F^{(e)}_\pi$

Real parts and moduli of the 3 individual and added terms normalized to the sQED term are displayed:
Comparison of $\pi\pi$ rescattering with Colangelo-Leutwyler’s first principles approach

One of the key ingredients in this approach is the strong interaction phase shift $\delta_1^1(s)$ of $\pi\pi$ (re)scattering in the final state. We compare the phase of $F_\pi(s)$ in our model with the one obtained by solving the Roy equation with $\pi\pi$-scattering data as input. We notice that the agreement is surprisingly good up to about 1 GeV. It is not difficult to replace our phase by the more precise exact one.

![Graph showing comparison of phase shifts](image-url)
Relation to data:

Left: GS fits of the Belle data and the effects of including higher states ρ' and ρ'' at fixed M_ρ and Γ_ρ. Right: Effect of $\gamma - \rho$ mixing in our simple EFT model.

Parameters: $M_\rho = 775.5$ MeV, $\Gamma_\rho = 143.85$ MeV, $\mathcal{B}[(\rho \to ee)/(\rho \to \pi\pi)] = 4.67 \times 10^{-5}$, $e = 0.302822$, $g_{\rho\pi\pi} = 5.92$, $g_{\rho ee} = 0.01826$.
Detailed comparison, in terms of the ratio:

\[
 r_{\rho\gamma}(s) \equiv \frac{|F_{\pi}(s)|^2}{|F_{\pi(s)}|_{D\gamma\rho=0}^2}
\]

a) Ratio of \(|F_{\pi}(E)|^2 \) with mixing vs. no mixing. Same ratio for GS fit with PDG parameters. b) The same mechanism scaled up by the branching fraction \(\Gamma_V/\Gamma(V \to \pi\pi) \) for \(V = \omega \) and \(\phi \). In the \(\pi\pi \) channel the effects for resonances \(V \neq \rho \) are tiny if not very close to resonance.
If mixing not included in $F_0(s) \Rightarrow$ total correction formula on spectral functions

$$v_0(s) = r_{\rho\gamma}(s) R_{IB}(s) v_-(s)$$

$$R_{IB}(s) = \frac{1}{G_{EM}(s) \beta_3^3(s)} \left| \frac{F_0(s)}{F_-(s)} \right|^2$$

- $G_{EM}(s)$ electromagnetic radiative corrections
- $\beta_0^3(s)/\beta_-^3(s)$ phase space modification by $m_{\pi^0} \neq m_{\pi^\pm}$
- $|F_0(s)/F_-(s)|^2$ incl. shifts in masses, widths etc

Final state radiation correction $FSR(s)$ and vacuum polarization effects $(\alpha/\alpha(s))^2$ and $l=0$ component $(\rho - \omega)$ we have been subtracted from all e^+e^--data.
$|F_π(E)|^2$ in units of e^+e^- l=1 (CMD-2 GS fit): a) τ data uncorrected for $\rho - \gamma$ mixing, and b) after correcting for mixing. Lower panel: e^+e^- energy scan data [left] and e^+e^- radiative return data [right].
Applications: a_μ and $B_{\pi\pi^0}^{\text{CVC}} = \Gamma(\tau \to \nu_\tau\pi\pi^0)/\Gamma_\tau$

How does the new correction affect the evaluation of the hadronic contribution to a_μ? To lowest order in terms of e^+e^--data, represented by $R(s)$, we have

$$a_\mu^{\text{had,LO}}(\pi\pi) = \frac{\alpha^2}{3\pi^2} \int_{4m_\pi^2}^{\infty} ds \ R^{(0)}_{\pi\pi}(s) \frac{K(s)}{s},$$

with the well-known kernel $K(s)$ and

$$R^{(0)}_{\pi\pi}(s) = (3s\sigma_{\pi\pi})/(4\pi\alpha^2(s)) = 3v_0(s).$$

Note that the $\rho - \gamma$ interference is included in the measured e^+e^--data, and so is its contribution to a_μ^{had}. In fact a_μ^{had} is intrinsic an e^+e^--based "observable" (neutral current channel).
How to utilize τ data: subtract CVC violating corrections

- traditionally $v_-(s) \rightarrow v_0(s) = R_{IB}(s) v_-(s)$
- our correction $v_-(s) \rightarrow v_0(s) = r_{\rho \gamma}(s) R_{IB}(s) v_-(s)$

Result for the $l=1$ part of $a_{\mu}^{\text{had}}[\pi \pi]$: $\delta a_{\mu}^{\text{had}}[\rho \gamma] \simeq (-5.1 \pm 0.5) \times 10^{-10}$
\[a_\mu(\pi\pi), I = 1, (0.592 - 0.975) \text{ GeV} \times 10^{-10} \]

<table>
<thead>
<tr>
<th>(\tau) decays</th>
<th>ALEPH 1997</th>
<th>390.75 ± 2.65 ± 1.94</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEPH 2005</td>
<td>388.74 ± 4.00 ± 2.07</td>
<td></td>
</tr>
<tr>
<td>OPAL 1999</td>
<td>380.25 ± 7.27 ± 5.06</td>
<td></td>
</tr>
<tr>
<td>CLEO 2000</td>
<td>391.59 ± 4.11 ± 6.27</td>
<td></td>
</tr>
<tr>
<td>Belle 2008</td>
<td>394.67 ± 0.53 ± 3.66</td>
<td></td>
</tr>
<tr>
<td>(\tau) combined</td>
<td>391.06 ± 1.42 ± 2.06</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(e^+e^- + CVC)</th>
<th>CMD-2 2006</th>
<th>386.58 ± 2.76 ± 2.59</th>
</tr>
</thead>
<tbody>
<tr>
<td>SND 2006</td>
<td>383.99 ± 1.40 ± 4.99</td>
<td></td>
</tr>
<tr>
<td>KLOE 2008</td>
<td>380.21 ± 0.34 ± 3.27</td>
<td></td>
</tr>
<tr>
<td>KLOE 2010</td>
<td>377.35 ± 0.71 ± 3.50</td>
<td></td>
</tr>
<tr>
<td>BABAR 2009</td>
<td>389.35 ± 0.37 ± 2.00</td>
<td></td>
</tr>
<tr>
<td>(e^+e^-) combined</td>
<td>385.12 ± 0.87 ± 2.18</td>
<td></td>
</tr>
</tbody>
</table>

\[l=1 \text{ part of } a_\mu^{\text{had}}(\pi\pi) \]
\(a_\mu^{\text{had}}[\pi\pi] \), \(I = 1 \), \((0.592 - 0.975) \text{ GeV} \times 10^{-10}\)

<table>
<thead>
<tr>
<th>(\tau) decays</th>
<th>ALEPH 1997</th>
<th>385.63 ± 2.65 ± 1.94</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALEPH 2005</td>
<td>383.54 ± 4.00 ± 2.07</td>
</tr>
<tr>
<td></td>
<td>OPAL 1999</td>
<td>375.39 ± 7.27 ± 5.06</td>
</tr>
<tr>
<td></td>
<td>CLEO 2000</td>
<td>386.61 ± 4.11 ± 6.27</td>
</tr>
<tr>
<td></td>
<td>Belle 2008</td>
<td>389.62 ± 0.53 ± 3.66</td>
</tr>
<tr>
<td></td>
<td>(\tau) combined</td>
<td>385.96 ± 1.40 ± 2.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(e^+e^- + \text{CVC})</th>
<th>CMD-2 2006</th>
<th>386.58 ± 2.76 ± 2.59</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SND 2006</td>
<td>383.99 ± 1.40 ± 4.99</td>
</tr>
<tr>
<td></td>
<td>KLOE 2008</td>
<td>380.21 ± 0.34 ± 3.27</td>
</tr>
<tr>
<td></td>
<td>KLOE 2010</td>
<td>377.35 ± 0.71 ± 3.50</td>
</tr>
<tr>
<td></td>
<td>BABAR 2009</td>
<td>389.35 ± 0.37 ± 2.00</td>
</tr>
<tr>
<td></td>
<td>(e^+e^-) combined</td>
<td>385.12 ± 0.87 ± 2.18</td>
</tr>
</tbody>
</table>
The $\tau \to \pi^0\pi\nu_\tau$ branching fraction $B_{\pi\pi^0} = \Gamma(\tau \to \nu_\tau\pi\pi^0)/\Gamma_\tau$ is another important quantity which can be directly measured. This “τ-observable” can be evaluated in terms of the $l=1$ part of the $e^+e^- \to \pi^+\pi^-$ cross section, after taking into account the IB correction $v_0(s) \to v_-(s) = v_0(s)/R_{IB}(s) \rightarrow r_{\rho\gamma}(s)$, where here we also have to “undo” the $\rho - \gamma$ mixing which is absent in the charged isovector channel. The shift is

$$\delta B_{\pi\pi^0}^{CVC}[\rho\gamma] = +0.62 \pm 0.06 \%$$
<table>
<thead>
<tr>
<th>τ decays</th>
<th>ALEPH 1997 (τ)</th>
<th>25.3 ± 0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEPH 2005 (τ)</td>
<td></td>
<td>25.4 ± 0.1</td>
</tr>
<tr>
<td>OPAL 1999 (τ)</td>
<td></td>
<td>25.2 ± 0.3</td>
</tr>
<tr>
<td>CLEO 2000 (τ)</td>
<td></td>
<td>25.3 ± 0.4</td>
</tr>
<tr>
<td>Belle 2008 (τ)</td>
<td></td>
<td>25.4 ± 0.4</td>
</tr>
<tr>
<td>τ combined</td>
<td></td>
<td>25.3 ± 0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$e^+e^- +$CVC</th>
<th>CMD-2 2006 (e^+e^-)</th>
<th>24.8 ± 0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SND 2006 (e^+e^-)</td>
<td>24.5 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>KLOE 2008 (e^+e^-)</td>
<td>24.2 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>KLOE 2010 (e^+e^-)</td>
<td>24.0 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>BABAR 2009 (e^+e^-)</td>
<td>24.8 ± 0.3</td>
</tr>
<tr>
<td>e^+e^- combined</td>
<td></td>
<td>24.6 ± 0.3</td>
</tr>
</tbody>
</table>

Branching fractions $B(\tau \to \pi\pi^0\nu_\tau)$
<table>
<thead>
<tr>
<th>τ decays</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEPH 1997 (τ)</td>
<td></td>
<td>25.3 ± 0.2</td>
</tr>
<tr>
<td>ALEPH 2005 (τ)</td>
<td></td>
<td>25.4 ± 0.1</td>
</tr>
<tr>
<td>OPAL 1999 (τ)</td>
<td></td>
<td>25.2 ± 0.3</td>
</tr>
<tr>
<td>CLEO 2000 (τ)</td>
<td></td>
<td>25.3 ± 0.4</td>
</tr>
<tr>
<td>Belle 2008 (τ)</td>
<td></td>
<td>25.4 ± 0.4</td>
</tr>
<tr>
<td>τ combined</td>
<td></td>
<td>25.3 ± 0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>e^+ e^- + CVC</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD-2 2006 (e^+ e^-)</td>
<td></td>
<td>25.4 ± 0.3</td>
</tr>
<tr>
<td>SND 2006 (e^+ e^-)</td>
<td></td>
<td>25.1 ± 0.4</td>
</tr>
<tr>
<td>KLOE 2008 (e^+ e^-)</td>
<td></td>
<td>24.8 ± 0.4</td>
</tr>
<tr>
<td>KLOE 2010 (e^+ e^-)</td>
<td></td>
<td>24.6 ± 0.4</td>
</tr>
<tr>
<td>BABAR 2009 (e^+ e^-)</td>
<td></td>
<td>25.5 ± 0.3</td>
</tr>
<tr>
<td>e^+ e^- combined</td>
<td></td>
<td>25.2 ± 0.3</td>
</tr>
</tbody>
</table>

Branching fractions \(B(\tau \rightarrow \pi \pi^0 \nu_\tau) \)
Most recent results of Davier et al:

- **Pre BaBar:** 25.42 ± 0.10 % for τ

 24.78 ± 0.28 % \Rightarrow 25.40 ± 0.28 ± 0.06 % for $e^+e^- + \text{CVC}$

- **New BaBar:** 25.15 ± 0.28 % \Rightarrow 25.77 ± 0.28 ± 0.06 % for $e^+e^- + \text{CVC}$

\[\delta B_{\pi\pi^0}^{\text{CVC}}[\rho\gamma] = +0.62 \pm 0.06 \% \]
τ decays	Belle	25.24 ± 0.39
	CLEO	25.44 ± 0.44
	ALEPH	25.49 ± 0.13
	DELPHI	25.31 ± 0.24
	L3	24.62 ± 0.61
	OPAL	25.46 ± 0.34
τ average		25.42 ± 0.10

$e^+e^- +$CVC	CMD2 03	25.03 ± 0.29
	CMD2 06	24.94 ± 0.31
	SND 06	24.90 ± 0.36
	KLOE 08	24.64 ± 0.29
e^+e^- average		24.78 ± 0.28

<p>| | KLOE 10 | 24.56 ± 0.34 |
| | BABAR 09 | 25.15 ± 0.28 |
| $B(\tau \to \pi\pi^0\nu_\tau)$ average| 25.51 ± 0.09 |</p>
<table>
<thead>
<tr>
<th>Decays Type</th>
<th>Experiment 1</th>
<th>Experiment 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau \rightarrow \pi \pi \nu\tau$</td>
<td>Belle: 25:24 0:39</td>
<td>CLEO: 25:44 0:44</td>
</tr>
<tr>
<td></td>
<td>ALEPH: 25:49 0:13</td>
<td>DELPHI: 25:31 0:24</td>
</tr>
<tr>
<td></td>
<td>L3: 24:25:31 0:24</td>
<td>OPAL: 25:46 0:34</td>
</tr>
<tr>
<td>Average</td>
<td>25:40 0:28</td>
<td>PDG average: 25:51 0:09</td>
</tr>
</tbody>
</table>

<p>| e^+e^-+CVC | CMD2 03: 26:25 0:29 | CMD2 06: 26:25 0:31 |
| | SND 06: 26:25 0:36 | KLOE 08: 26:25 0:29 |
| | e^+e^- average: 26:25 0:28 | KLOE 10: 26:25 0:34 |
| | BABAR 09: 26:25 0:28 | PDG average: 26:25 0:09 |</p>
<table>
<thead>
<tr>
<th>$B(\tau \rightarrow \pi \pi \nu\tau)$</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>25.18 ± 0.34</td>
<td>25.77 ± 0.28</td>
<td>25.51 ± 0.09</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary and Conclusions

VMD+sQED EFT understood as the tail of the more appropriate resonance Lagrangian approach (Ecker et al. 1989) in low energy $\pi\pi$ production yields

- proper ρ propagator self-energy effects for GS form factor ($\rho \rightarrow \pi\pi$)
- pion-loop effects in $\rho - \gamma$ mixing contributes sizable interferences

Note: so far PDG parameters masses, withs, branching fractions etc. of resonances like ρ^0 all extracted from data assuming GS like form factors (model dependent!)

Pattern:

- moderate positive interference (up to +5%) below ρ,
- substantial negative interference (-10% and more) above the ρ (must vanish at $s = 0$ and $s = M_{\rho}^2$)
Remarkable agreement with pattern of e^+e^- vs τ discrepancy

Shift of the τ data to lie perfectly within the ballpark of the e^+e^- data

Lesson: effective field theory the basic tool (not ad hoc pheno. ansätze)

- $\rho - \gamma$ correction function $r_{\rho\gamma}(s)$ entirely fixed from neutral channel

- τ data provide independent information

What does it mean for the muon $g - 2$?

- It looks we have fairly reliable model to include τ data to improve a_{μ}^{had}

- There is no τ vs. e^+e^- alternative of a_{μ}^{had}

For the lowest order hadronic vacuum polarization (VP) contribution to a_{μ} we find

$$a_{\mu}^{\text{had,LO}}[e, \tau] = 690.96(1.06)(4.63) \times 10^{-10} \quad (e + \tau)$$
\[a_\mu^{\text{the}} = 116591797(60) \times 10^{-11} \]
\[a_\mu^{\exp} = 116592080(54)(33) \times 10^{-11} \]
\[a_\mu^{\exp} - a_\mu^{\text{the}} = (283 \pm 87) \times 10^{-11} \]
\[3.3 \sigma \]

Höcker 2010 (theory-driven analysis)

\[a_\mu^{\text{had}, \text{LO}}[e] = (692.3 \pm 1.4 \pm 3.1 \pm 2.4 \pm 0.2 \pm 0.3) \times 10^{-10} \] (\(e^+e^-\) based),
\[a_\mu^{\text{had}, \text{LO}}[e, \tau] = (701.5 \pm 3.5 \pm 1.9 \pm 2.4 \pm 0.2 \pm 0.3) \times 10^{-10} \] (\(e^+e^-+\tau\) based),

- Note: ratio \(F_0(s)/F_-(s)\) could be measured within lattice QCD, without reference to sQED or other hadronic models. Do it!

- Including \(\omega, \phi, \rho', \rho''\), \cdots requires to go to appropriate Resonance Lagrangian extension (e.g HLS model Benayoun et al.)
Some recent results: Davier et al., Hagiwara et al., Benayoun et al.
Future

Fermilab E989: Approved January 2011

- Re-locate the \((g - 2)\) storage ring to Fermilab
- Use the many proton storage rings to form the ideal proton beam
- Use one of the antiproton rings as a 900 m decay line to produce a pure muon beam
- Accumulate 21 times the statistics
- Improve the systematic errors
- Final goal: At least a factor of 4 more precise over E821
The adventure:

Sikorsky S64F 12.5 T hook weight (Outer coil/cryostat 8T)

- Transport coils to and from barge via Sikorsky air crane
- Ship through St Lawrence -> Great Lakes -> Calumet SAG
- Subsystems can be transported overland, but probably more cost effective to ship steel on barge as well.

Timeline presented to DOE this week

<table>
<thead>
<tr>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>June</td>
<td>July</td>
<td>Aug</td>
</tr>
</tbody>
</table>

- Engineer/construct building and tunnel
- Disassemble and transport storage ring
- Reassemble storage ring and cryogenics
- Beamline and target modifications
- Shim field, install detectors, commission
On this timescale it’s essential that the theory improve

- **Lowest-order hadronic**
 - BaBar and Belled have additional unanalyzed data
 - especially important for multihadron channels
 - VEPP2000 at Novosibirsk
 - CMD3
 - SND

- **HLBL**
 - Agreement among theorists and additional work
 - KLOE 2 photon physics
 - BES, Mainz
The new muon $g - 2$: Fermilab E989

- $\delta a_\mu = 16 \times 10^{-11}$ by 2015
- Magnetic field: $\frac{\delta \langle B \rangle_\mu}{\langle B \rangle_\mu} \leq 2 \times 10^{-8}$
- Requires 10% error on HLbL
- HLbL white paper in progress

Present:

- $a_\mu^{\text{exp}} = 116\,592\,089(63) \times 10^{-11}$; $a_\mu^{\text{SM}} = 116\,591\,793 \pm 51 \times 10^{-11}$

E989: statistics $21 \times$; total error factor 4 more precise

$$\begin{align*}
\sigma_{\text{stat}} &= 0.1 \text{ ppm} \\
\sigma_{\text{syst}} &= 0.1 \text{ ppm}
\end{align*}$$

- $\sigma_{\text{tot}} = 0.14 \text{ ppm}$
- $a_\mu^{\text{exp}} = 116\,59x\,xxx(16) \times 10^{-11}$
Right now: \[3.3 \sigma \] missing!

What is it?
- statistical fluctuation of experimental result
- underestimated systematic error
- missing higher-order SM contributions
- underestimated theory error (incl. possible computational)
- physics beyond SM

Most promising New Physics scenario: SUSY

Leading SUSY contributions to \(g - 2 \) in supersymmetric extension of the SM.
\(\tilde{m} \) lightest SUSY particle; SUSY requires two Higgs doublets

\[\tan \beta = \frac{v_1}{v_2}, \quad v_i = \langle H_i \rangle; \quad i = 1, 2; \quad \tan \beta \sim \frac{m_t}{m_b} \sim 40 \quad [4 - 40] \]

\[a^\text{SUSY}_\mu \simeq \frac{\text{sign}(\mu M_2) \alpha(M_Z)}{8\pi \sin^2 \Theta_W} \frac{\left(5 + \tan^2 \Theta_W\right)}{6} \frac{m^2_\mu}{M^2_\text{SUSY}} \tan \beta \left(1 - \frac{4\alpha}{\pi} \ln \frac{M_\text{SUSY}}{m_\mu}\right) \]

with \(M_\text{SUSY} \) a typical SUSY loop mass and the sign is determined by the Higgsino mass term \(\mu \), RG improved.

There are a lot of “SUSY’s”

- General MSSM has > 100 free parameters
- CMSSM – “constrained” and, related but even more constrained MSUGRA, and others
These models assume many degeneracies of masses and couplings in order to restrict the number of parameters.

Typically, $m_o, m_{1/2}, \text{sign}(\mu), \tan \beta, A$ (or even more)

- Then there is R–parity – is sparticle number conserved (dark matter candidate!)

- And, many ways to describe EW symmetry breaking

Role for LHC searches:
3 σ deviation in muon g-2 (if real) requires $\text{sign}(\mu)$ positive and $\tan \beta$ preferable large. Note:

- $\text{sign}(\mu)$ cannot be obtained from LHC (hadron collider)

- $\tan \beta$ can’t be pinned down by LHC (hadron collider)

so muon g-2 important hint for constraining SUSY parameter space (is SUSY)
LHC soon will provide severe constraints on SUSY mass spectrum [plots Olive 09].
Outlook

LHC the big challenge ahead!

- it's running!

Precision experiments remain an important complement of LHC:

- a_μ maybe the best!

- this we hope will be realised!

Time horizon for next step in improvement: 5 years

Will provide important information on Physics Beyond the SM scenarios!
Provided deviation is real $3\sigma \to 9\sigma$ possible?

If SUSY:

$$\delta a_\mu \leftrightarrow \text{sign}(\mu) \text{ and } \tan \beta$$

If not SUSY or 2HDM may be even more interesting!

In any case establishing a new theory replacing SM likely is a long way to go and requires efforts on very different levels.
The Muon $g - 2$
“the closer you look the more there is to see”

History of sensitivity to various contributions
The anomalous magnetic moment of the muon by itself a tiny 0.116 % effect now measured at 5×10^{-7}!
Backup slides on hadronic LbL contribution
The hadronic LbL: setup and problems

Hadrons in $\langle 0| T\{A^\mu(x_1)A^\nu(x_2)A^\rho(x_3)A^\sigma(x_4)\}|0\rangle$

Key object full rank-four hadronic vacuum polarization tensor

$$\Pi_{\mu\nu\lambda\rho}(q_1, q_2, q_3) = \int d^4 x_1 \, d^4 x_2 \, d^4 x_3 \, e^{i(q_1 x_1 + q_2 x_2 + q_3 x_3)} \times \langle 0| T\{j_\mu(x_1)j_\nu(x_2)j_\lambda(x_3)j_\rho(0)\}|0\rangle.$$

- non-perturbative physics

- general covariant decomposition involves 138 Lorentz structures of which 32 can contribute to $g - 2$
- fortunately, dominated by the pseudoscalar exchanges $\pi^0, \eta, \eta', ...$ described by the effective Wess-Zumino Lagrangian

- generally, pQCD useful to evaluate the short distance (S.D.) tail

- off-shell form factors needed not directly accessible to experiment!

- the dominant long distance (L.D.) part must be evaluated using some low energy effective model which includes the pseudoscalar Goldstone bosons as well as the vector mesons which play a dominant role (vector meson dominance mechanism); HLS, ENJL, general RLA, large N_c inspired ansätze, and others

Need appropriate low energy effective theory \(\Rightarrow\) amount to calculate the following type diagrams
Data show almost background free spikes of the PS mesons! Substantial background form quark loop is absent (seems to contradict large quark-loop contribution as obtained in SDA). Clear message from data: fully non-perturbative, evidence for PS dominance. However, no information about axial mesons (Landau-Yang theorem).Illustrates how data can tell us where we are.

Low energy expansion in terms of hadronic components: theoretical models vs experimental data

► KLOE, KEDR, BES, BaBar, Belle, ?
LD requires low energy effective hadronic models: simplest case $\pi^0\gamma\gamma$ vertex

Basic problem: (s, s_1, s_2)–domain of $\mathcal{F}_{\pi^0\gamma\gamma}\ast(s, s_1, s_2)$; here $(0, s_1, s_2)$–plane

Two scale problem: “open regions”
- Data, effective Lagrangians, OPE,
- QCD factorization,
- Brodsky-Lepage approach

One scale problem: “no problem”
Models and Controversies

☐ Low energy effective field theory
Traditional approach: low energy effective Lagrangians: HLS, ENJL (resonance chiral theory) Kinoshita et al., Bijnens et al, matching and double counting problems

☐ Large N_c QCD inspired approach
Novel approach: refer to quark–hadron duality of large-N_c QCD, hadron spectrum known, infinite series of narrow spin 1 resonances 't Hooft 79 ⇒ no matching problem (resonance representation has to match quark level representation)
De Rafael 94, Knecht, Nyffeler 02

☐ other new approaches:
 ● HLbL from string theory
 Cappiello, Catá, D’ Ambrosio
 ● QCD based numeric Schwinger-Dyson/Bethe-Salpeter equations approach
 Goecke, Fischer, Williams
The Melnikov-Vainshtein constraint and model

The model that fits the box

- We simplify the problem by picking up a particular part in the phase-space $q_1^2 \gg q_2^2 \gg q_3^2 \gg \Lambda_{QCD}^2$. However, we require that in that part of the phase-space the amplitude is reproduced "exactly".

\[
\mathcal{M} = \alpha^2 N_c \text{Tr} \left[\hat{Q}^4 \right] \mathcal{A}
\]

\[
\mathcal{A} = \frac{4}{q_3^2 q_4^2} \{f_2 \tilde{f}_1 \} \{\tilde{f} \bar{f}_3\}
\]

\[
\mathcal{A} = -\frac{N_c \alpha^2}{2 \pi^2 F_{\pi}^2} \frac{F_{\pi \gamma^* \gamma^*}(q_1^2, q_2^2)}{q_3^2 + m_{\pi}^2} \{f_2 \tilde{f}_1\} \{\tilde{f} f_3\}
\]

\[
\{f_2 \tilde{f}_1\} \{\tilde{f} f_3\} + \frac{q_3^2 + q_2^2}{4} \{f_2 \tilde{f}_1\} \{f_3 \tilde{f}_3\} + \ldots
\]
Constraints for on-shell pions (pion pole approximation)

- The constant \(e^2 F_{\pi^0 \gamma\gamma}(m_{\pi}^2, 0, 0) = \frac{e^2 N_c}{12\pi^2 f_{\pi}} = \frac{\alpha}{\pi f_{\pi}} \approx 0.025 \text{ GeV}^{-1} \) well determined by \(\pi^0 \to \gamma\gamma \) decay rate (from Wess-Zumino Lagrangian); experimental improvement needed!

- Information on \(F_{\pi^0 \gamma^* \gamma}(m_{\pi}^2, -Q^2, 0) \) from \(e^+e^- \to e^+e^-\pi^0 \) experiments

CELLO and CLEO measurement of the \(\pi^0 \) form factor \(F_{\pi^0 \gamma^* \gamma}(m_{\pi}^2, -Q^2, 0) \) at high space–like \(Q^2 \). Outdated now by BABAR?
Brodsky–Lepage interpolating formula gives an acceptable fit.

\[
F_{\pi}^{0,\gamma^*\gamma}(m_{\pi}^2, -Q^2, 0) \simeq \frac{1}{4\pi^2 f_{\pi}} \frac{1}{1 + (Q^2/8\pi^2 f_{\pi}^2)} \sim \frac{2f_{\pi}}{Q^2}
\]

Inspired by pion pole dominance idea this FF has been used mostly (HKS, BPP, KN) in the past, but has been criticized recently (MV and FJ07).

- Melnikov, Vainshtein: in chiral limit vertex with external photon must be non-dressed! i.e. use \(F_{\pi}^{0,\gamma^*\gamma}(0, 0, 0) \), which avoids eventual kinematic inconsistency, thus no VMD damping \(\Rightarrow \) result increases by 30% !

- In \(g - 2 \) external photon at zero momentum \(\Rightarrow \) only \(F_{\pi}^{0,\gamma^*\gamma}(-Q^2, -Q^2, 0) \) not \(F_{\pi}^{0,\gamma^*\gamma}(m_{\pi}^2, -Q^2, 0) \) is consistent with kinematics. Unfortunately, this off–shell form factor is not known and in fact not measurable and CELLO/CLEO constraint does not apply!. Obsolete far off-shell pion (in space-like region).

Can we check such questions experimentally or in lattice QCD?
Present status:

Pseudoscalar exchanges

<table>
<thead>
<tr>
<th>Model for $F(p^0)_{\gamma^\gamma^}$</th>
<th>$a_\mu(\pi^0) \times 10^{11}$</th>
<th>$a_\mu(\pi^0,\eta,\eta') \times 10^{11}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>modified ENJL (off-shell) [BPP]</td>
<td>59(9)</td>
<td>85(13)</td>
</tr>
<tr>
<td>VMD / HLS (off-shell) [HKS,HK]</td>
<td>57(4)</td>
<td>83(6)</td>
</tr>
<tr>
<td>LMD+V (on-shell, $h_2 = 0$) [KN]</td>
<td>58(10)</td>
<td>83(12)</td>
</tr>
<tr>
<td>LMD+V (on-shell, $h_2 = -10$ GeV^2) [KN]</td>
<td>63(10)</td>
<td>88(12)</td>
</tr>
<tr>
<td>LMD+V (on-shell, constant FF at ext. vertex) [MV]</td>
<td>77(7)</td>
<td>114(10)</td>
</tr>
<tr>
<td>nonlocal χQM (off-shell) [DB]</td>
<td>65(2)</td>
<td>-</td>
</tr>
<tr>
<td>LMD+V (off-shell) [N]</td>
<td>72(12)</td>
<td>99(16)</td>
</tr>
<tr>
<td>AdS/QCD (off-shell ?) [HoK]</td>
<td>69</td>
<td>107</td>
</tr>
<tr>
<td>AdS/QCD/DIP (off-shell) [CCD]</td>
<td>65.4(2.5)</td>
<td>-</td>
</tr>
<tr>
<td>DSE (off-shell) [FGW]</td>
<td>58(7)</td>
<td>84(13)</td>
</tr>
<tr>
<td>[PdRV]</td>
<td>-</td>
<td>114(13)</td>
</tr>
<tr>
<td>[JN]</td>
<td>72(12)</td>
<td>99(16)</td>
</tr>
</tbody>
</table>

BPP = Bijnens, Pallante, Prades '95, '96, '02 (ENJL = Extended Nambu-Jona-Lasinio model); HK(S) = Hayakawa, Kinoshita, Sanda '95, '96; Hayakawa, Kinoshita '98, '02 (HLS = Hidden Local Symmetry model); KN = Knecht, Nyffeler '02; MV = Meinov, Vainshtein '04; DB = Dorokhov, Broniowski '08 (χQM = Chiral Quark Model); N = Nyffeler '09; HoK = Hong, Kim '09; CCD = Cappiello, Catà, D'Ambrosio '10 (used AdS/QCD to fix parameters in DIP (D'Ambrosio, Isidori, Portoél's ansatz); FGW = Fischer, Goecke, Williams '10, '11 (Dyson-Schwinger equation)

Reviews on LbyL: PdRV = Prades, de Rafael, Vainshtein '09; JN = Jegerlehner, Nyffeler '09

A. Nyffeler, Seattle
Data constrain Models

Details in Seattle talks:
- Dario Morriciani: KLOE small angle tagger (low energy $\pi^0\gamma\gamma$)
- Achim Denig: BaBar and BES results and plans
- Simon Eidelman: Belle and KEDR results and plans [work in progress]
- Henryk Czyż: EKHARA a Monte Carlo for $\gamma^*\gamma^*$ physics

Pion exchange in hadronic LbL

$F_{\pi^+\gamma\gamma^*}$ form factors are key objects
- external vertex: $F_{\pi\gamma\gamma}(t_\pi, t_\gamma, 0^2)$
 - \mathcal{Z} far off-shell pion \mathcal{Z}
 - zero-energy photon
- internal vertex: $F_{\pi\gamma\gamma}(t_\pi, t_1, t_2)$
 - totally off-shell object

These form factors were never measured

H. Czyż, IF, UŚ, Katowice, EKHARA 2.0+ ...
Overview (Eidelman incl progress report for Belle,KEDR):

mostly single-tag events: KLOE, KEDR (taggers), BaBar, Belle, BES III (high luminosity)

Dalitz-decays: $\rho, \omega, \phi \rightarrow \pi^0(\eta)e^+e^-$ Novosibirsk, NA60, JLab, Mainz, Bonn, Jülich, BES
would be interesting, but is buried in the background
The π^0 Transition Form Factor

- In Q^2 range 4-9 GeV2 BaBar results are in a reasonable agreement with CLEO and CELLO

- Expectation: >10 GeV2 reach asymptotic limit for $Q^2 F(Q^2) = \sqrt{2} f_\pi = 0.185$ GeV predicted by Brodsky-Lepage in 1979

Data exceed asymptotic limit $Q^2 > 10$ GeV2
The π^0 Transition Form Factor

Comparison with world data set and QCD

- Several DAs to confront theory vs. experiment:
 - CZ: Chernyak-Zhitnitsky DA
 - ASY: Asymptotic DA
 - BMS: Bakulev-Mikhailov-Stefanis

Models for DA do not describe data → Is the DA for pions not known?

- Use Bakulev-Mikhailov-Stefanis light-cone sum rule theory at NLO pQCD + twist-4 power corrections

Need for higher order pQCD corrections ?!

Achim Denig

Meson Transition FFs at BaBar
Present & Future

- Role of Melnikov-Vainshtein constraint still under debate (is virtual photon dressed or undressed at external $\pi^0\gamma\gamma$ vertex?)

- Role of quark loop: is it an independent contribution? solving Schwinger-Dyson equation approach yields very large value.

- Large Q^2 behavior of $F_{\pi^0\gamma\gamma^*}(m_{\pi}^2, -Q^2, 0)$ from BaBar shows much weaker fall-off than expected by theory

- New muon $g - 2$ experiment is on its way !!!
 - Need to improve accuracy for the hadronic light-by-light contribution.
 - New input form $\gamma\gamma$ physics to constrain theoretical models for HLbL (KLOE-2,BES,MAINZ)
 - Challenge for theory: radiative corrections needed
Question of asymptotic behavior seen by BaBar, will likely be settled by Belle

Can we check controversial dressed/undressed (i.e. damping or not?) at external vertex? Can Primakoff-effect plus DR help?

Lattice QCD makes big progress: we may expect relevant results for constraining models

Not to forget: urgent improvement of VP mandatory [lattice QCD may become competitive] (Novosibirsk: CMD3, SND, unanalysed data from BaBar & Belle?)