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Abstract

I am commenting on the recent paper [1] about a new calculation of the
H → γγ rate mediated by the W boson loop, and the lack of decoupling of
the heavy states which mediate the decay. We remind the reader that the
heavy Higgs limit is dominated by the contribution from the longitudinal
W bosons, which in the limit mH ≫ MW are represented by the charged
Higgs ghosts according to the equivalence theorem. The corresponding
contribution is missing in [1].

1 Introduction

In a recent paper [1] previous one-loop calculations of the decay H → γγ via

the W boson loop in the electroweak Standard Model (SM) have been criticized

to be incorrect. In [1] it is argued that in the limit mH ≫MW the Higgs decay

amplitude A
(W )
Hγγ should stay bounded, while it is actually ∝ m2

H , a behavior

which is claimed to be violating the decoupling theorem. In this short note we

defend previous calculations and explain why previous results are correct. The

main point is that the decoupling theorem [2] is a statement about the limit

MW ≫ mH while the limit mH ≫MW is ruled by the equivalence theorem [3].

It is well known that heavy Higgs and heavy top physics has little to do with

the gauge sector (since the heavy Higgs, heavy top effective theory is there for

vanishing gauge couplings g, g′ = 0), but is determined entirely by the symmetry

breaking sector, the Higgs and the Yukawa sector [4],

Leff = ∂µΦ+∂µΦ + t̄ γµ∂µ t+ b̄ γµ∂µ b+ µ2 Φ+Φ + λ
(

Φ+Φ
)2

−yt

(

Q̄LΦctR + h.c.
)

(1)
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where covariant derivatives appear replaced by normal derivatives and the lo-

cal SU(2)L ⊗ U(1)Y symmetry is replaced by a global SU(2)L symmetry with

corresponding Ward-Takahashi identities . Φ is the Y = 1 Higgs doublet field

Φ(x) =

(

ϕ+

ϕ0

)

; ϕ0 =
H + v − iϕ√

2
. (2)

By Φc = i τ2Φ∗ we denote the Y charge conjugate Y = −1 Higgs doublet. QL

is the left-handed (t, b) doublet. The b as a light field can be taken to be non-

interacting. In our case of H → 2γ photons couple as usual to the charged

particles in the heavy sector (charged Higgses and the top and bottom quarks).

Furthermore, the limit g, g′ → 0 should be taken at fixed low energy constraint

on sin2 ΘW = 1 − M2

W

M2

Z

= g′2

g2+g′2 . The adequate renormalization scheme takes

Gµ and sin2 ΘW as input parameters together with α for the QED part.

We first look at the decoupling limit: the decoupling theorem states that

heavy virtual particles of mass M decouple like O(E/M) as M → ∞ where E

is the fixed energy or light-mass scale of the “light” particle sector. In fact the

Appelquist-Carrazone decoupling–theorem [2] holds in theories like QED and

QCD only, where masses and couplings are independent and when some of the

masses get large at fixed couplings. In the SM where masses are generated by

the Higgs mechanism the decoupling theorem does not hold in general because

of the well known mass coupling relations

MW =
g v

2
, MZ =

g v

2 cos ΘW

mf =
yf v√

2
, mH =

√
2λ v . (3)

In the SM masses can only get large either in the strong coupling regime, or by

taking the Higgs vacuum expectation value v → ∞, which then would violate

the important low energy constraint

v =
(√

2Gµ

)−1/2

= 246.2186(16) GeV , (4)

and in addition would rescale the spectrum uniformly to large masses. In the SM

a particle cannot be removed from the theory by just taking its mass to infinity.

At fixed v it requires to take the strong coupling limit in which perturbative

arguments fail to apply.

One drawback, relevant for the H → γγ, is that the HWW coupling is

2M2
W/v, and similarly, the Hψ̄fψf fermion couplings are mf/v. As a conse-

quence, masses appear as factors in the numerators of Feynman amplitudes in
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addition to the masses in propagators [mass terms] which show up in the denom-

inators. The mass factors in the numerators obviously lead to non decoupling

effects for large masses.

In discussing various mass limits in the SM one should keep in mind that

relations like the custodial symmetry constraint ρ =
M2

Z

M2

W
cos2 ΘW

= 1 or equiv-

alently cos2 ΘW = M2
W /M2

Z must be respected. In the gauge field sector we

have three basic parameters, the gauge couplings g, g′ and the Higgs vacuum

expectation value v which usually (LEP parametrization) are mapped to α, Gµ

and MZ as the most precisely known input parameters. Then the W mass is

given by

M2
W /M2

Z =
1

2

(

1 +

√

1 − 4A2
0

M2
Z

1

1 − ∆r

)

= cos2 ΘW (5)

considered to be kept fixed. Here A0 =
(

πα√
2 Gµ

)1/2

= 37.2802(3) GeV and ∆r

represents known radiative corrections. In any case we must respect MW < MZ ,

or more precisely the relation (5). We just wanted to point out that non-

decoupling effects in the SM are experimentally well established, and one cannot

conclude a SM calculation to be incorrect because of lack of decoupling. Of

course the lack of decoupling naively looks unnatural, but in fact constraints

from the ρ–parameter on heavy states are quite intriguing and extensions of the

SM in most cases end up in a fine tuning problem [5], because decoupling of new

heavy states, in theories where masses are generated by spontaneous symmetry

breaking, is more the exception than the rule. Therefore, experimental low

energy constraints actually are much more severe than often anticipated.

The equivalence theorem has to do with the massive gauge bosons in the

limits where gauge boson masses are expected to become irrelevant. This con-

cerns high energies E ≫ MW ,MZ as well as the effective regime when gauge

boson masses are small relative to other masses, like mt,mH ≫ MW ,MZ .

Specifically for the heavy top effects this has been worked out and discussed

in [4] and [6].

The root of the equivalence theorem is the following: in the unbroken phase

of the SM the gauge bosons are massless and have two transverse degrees of

freedom. When the SM undergoes spontaneous symmetry breaking (Higgs

mechanism) the gauge bosons become massive and get a third physical de-

gree of freedom, the longitudinal one, by “eating up the Higgs ghosts”, which

become unphysical. The number of physical degrees of freedom remains con-

served. The broken symmetry is recovered as an asymptotic symmetry when
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energies get large relative to the gauge boson masses. Equivalently, in the limit

MW , MZ ≪ E the gauge bosons become transversal again, however, the lon-

gitudinal modes transmute back into physical scalar Higgs degrees of freedom.

Three of the four scalar Higges had turned into unphysical Higgs ghosts during

symmetry breaking. At high energies the symmetry is restored.

Formally, one may use ’t Hooft’s gauge fixing conditions (linear covariant

gauge)

W±
µ : C± = −∂µW

µ± ± iξWMWϕ± = 0
Zµ : CZ = −∂µZ

µ − ξZMZϕ = 0
Aµ : CA = −∂µA

µ = 0
(6)

which imply a correspondence like ∂µW
µ± ∝ ϕ±. While the transversal modes

couple with gauge coupling g HW+W− the ghosts couple with the Higgs self

coupling λHϕ+ϕ− and when mH ≫ MW , meaning λ ≫ g, the longitudinal

modes dominate. This is the limit referred to in Ref. [1] as decoupling limit,

mistakenly the dominating longitudinal mode has been lost in the calculation.

The relevant Ward-Takahashi identities derive from the standard model

Slavnov-Taylor identities as follows. We use the notation of Ref. [7]. In the ’t

Hooft gauge we denote by ξ the gauge parameter, a, ζ and η± are the photon-

associated, the neutral and charged Faddeev–Popov ghost fields, respectively.

The W boson propagator satisfies

< T∂µW
µ+(x)W−

ν (y) > +ξMW < Tϕ+(x)W−
ν (y) >

= −ξ < T η̄+(x)∂νη
−(y) > +i ξ [e < T η̄+(x) (W−

ν a −Aν η
−)(y) >

−g cos ΘW < T η̄+(x)(W−
ν ζ − Zνη

−)(y) >]

and

< T∂µW
µ+(x)∂νW

ν−(y) > + ξMW < T∂µW
µ+(x)ϕ−(y) >

+ ξMW < Tϕ+(x)∂νW
ν−(y) > + ξ2M2

W < Tϕ+(x)ϕ−(y) >= −i ξδ(x− y)

for the longitudinal parts of the gauge field propagators. Using the usual ten-

sor decomposition for the self-energy functions (inverse propagators) in Fourier

space

< TWµ+(x)W ν−(y) > → i (gµνA1 + qµqνA2) ≡ −i
(

gµνΠW (q2) + · · ·
)

< TWµ+(x)ϕ−(y) > → MW pµB1

< Tϕ+(x)ϕ−(y) > → iC1 ≡ i Πϕ(q2)
< T ζ̄+(x)ζ−(y) > + · · · → −iM2

WD1

the above identities read:

ξ
(

A1 + q2A2 + B1

)

+D1 = 0
q2
(

A1 + q2A2 + 2B1

)

+ C1 = 0 .
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By D1 we have denoted the full Faddeev–Popov ghost contribution which in-

cludes the three terms on the r.h.s. of the first of the above Slavnov-Taylor

identities .

In the limit g → 0 the Faddeev-Popov ghosts do not contribute and therefore

D1 ≃ 0 such that A1 + q2A2 +B1 ≃ 0. Since the self–energy amplitude A2 does

not exhibit a pole at q2 = 0 we have q2A2 → 0. Thus we obtain the relevant

Ward-Takahashi identity A1 ≃ C1

q2 which we may write in the form

ΠW (q2)

M2
W

≃ −Πϕ±(q2)

q2
= −Π′

ϕ±(q2) (7)

and which expresses the physical transversal part of the W self–energy in terms

of the self–energy of the charged scalar Higgs ghosts. For the HW+W− vertex

the Slavnov-Taylor identities look the same as for the W+W− propagator with

a Higgs field in addition under the time-ordering prescription: like

〈T∂µW
µ+W ν−H〉 − i ξ MW 〈Tϕ+W ν−H〉 = −ξ〈T η̄+∂µη

−H〉 + · · · (8)

modulo the gauge variation of the Higgs field, which vanishes when the Higgs

is taken on-shell. Again in the limit of vanishing gauge couplings the r.h.s is

vanishing, meaning that the longitudinal component of the W is replaced by its

charged Higgs ghost.

For illustration of a similar mechanism we remind about another example

of non-decoupling and the play of the equivalence theorem: the heavy top con-

tribution to the W self–energy. In the limit mt ≫MW ,MZ the gauge coupling

gWµ+(t̄γµ Π− b) turns into yt ϕ
+(t̄Π−b) − yb ϕ

+(t̄Π+b) (Π± = (1 ± γ5)/2 the

chiral projectors). Most prominent example of an electroweak non-decoupling

heavy top effect is the well known low energy effective neutral to charged cur-

rent coupling ratio ρ = GNC/GCC. It gets renormalized as ρ = 1 + ∆ρ where

∆ρ = ΠZ(0)
M2

Z

− ΠW (0)
M2

W

≃ Π′
ϕ±(0) − Π′

ϕ(0) =
√

2Gµ Nc

16π2 |m2
t −m2

b | at one loop. This

leading top effect is Veltman’s “flag pole” [8] and allowed to “measure” the top

mass indirectly at LEP [9], prior to the direct top discovery at the Tevatron [10].

Similarly, B − B̄ oscillations discovered by Argus at DESY [11] were possible

because the effect is enhanced by a non-decoupling heavy top contribution (see

e.g. [12, 13]). Non-decoupling effects in extensions of the SM have been dis-

cussed in Ref. [5]. In the context of Higgs production and decay non-decoupling

phenomena of heavy fermions where investigated long time ago in [14] (see

also [15, 16]). Last but not least, the present indirect Higgs mass bound from

LEP is due to a non-decoupling effect. When we try to remove the virtual Higgs
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from the SM by increasing its mass the SM would turn into a non-renormalizable

theory as we know. In fact m2
H effects in the limit mH ≫MW ,MZ at one loop

are screened by the custodial symmetry of the minimal Higgs system and only

a logarithmic Higgs mass dependence persists [17] in this case.

In summary: in the limit under consideration physical S-matrix elements

are dominated by the longitudinal vector boson degrees of freedom and accord-

ing to the equivalence theorem, with mH [mt] as a high energy scale, one is

allowed to replace (up to a phase and up to O(M/mH) [O(M/mt)] corrections)

a longitudinally polarized vector boson by its corresponding unphysical scalar.

An equivalent relationship is obtained in the limit of vanishing gauge couplings,

g′, g → 0, from the Ward-Takahashi identities which derives from the remaining

global symmetry [4].

2 H → 2γ at one-loop

For H → γγ the correct SM results are well known. The W -loop amplitude is

(see e.g. [18, 19, 20, 21])

A
(W )
Hγγ = CW

[

3C0(MW ,MW ,MW ; 0, 0,m2
H) (2M2

W −m2
H) − 3 − 1

2
xW

]

xW →0∼ CW

[

7

4
xW +

11

120
x2

W +
19

1680
x3

W + · · ·
]

zW →0∼ 3CW

{[

1
6zW

+
(

π2 − ln2 zW + 2
)

/2

−
(

π2 − ln2 zW + 2 ln zW

)

zW + (ln zW − 2) z2
W + · · ·

]

+iπ
[

− ln zW + 2 (ln zW − 1) zW + z2
W + · · ·

]

}

(9)

with CW = α
2π M

2
W and C0(M,M,M ; 0, 0, s) = 2

s

(

arctan 1√
4M2/s−1

)2

for s ≤
4M2. Furthermore, we denoted xW = m2

H/M
2
W and zW = 1/xW . For s >

4M2 we have C0 = − 1
2s

(

ln 1−
√

1−y
1+

√
1−y

+ iπ
)2

with y = 4M2/s. For fixed HWW

coupling CW is fixed and the amplitude exhibits decoupling i.e. it is O(xW ) as

xW → 0. Taking into account the growth of the coupling, however, the complete

amplitude for mW ≫ mH tends to a constant and lacks decoupling in the naive

sense. The other limit zW → 0, i.e. mH ≫ MW , is exhibiting the singular

term in the box. This term is the one which has been questioned in [1]. The

equivalence theorem requires this term to be there without question.

6



We have calculated these amplitudes in the ’t Hooft gauge with an arbitrary

gauge parameter ξ as well as in the unitary gauge using dimensional regular-

ization. The off-shell Slavnov-Taylor identities have been checked as well to

be satisfied. In the ’t Hooft gauge with free gauge parameter ξ there are 13

diagrams contributing. In the unitary gauge there are 2∗:

W±
γ

γ

H +

1

Both calculations give identical results†.

Using the equivalence theorem, we may calculate the leading contribution

for mH ≫MW by calculating the much simpler diagrams

ϕ±
γ

γ

H +

exhibiting loops of the charged Higgs ghosts only. The result in the ’t Hooft

gauge with arbitrary gauge parameter ξ reads

A
(ϕ)
Hγγ = CW

[

−1

2
xW + C0(Mϕ,Mϕ,Mϕ; 0, 0,m2

H)M2
ϕ xW

]

MW →0∼ 3CW

{

1
6zW

+O(M2
W /m2

H)

}

. (10)

In the full SM in the ’t Hooft gauge M2
ϕ = ξM2

W is gauge dependent, however,

in the limit where the equivalence theorem applies we have Mϕ/mH → 0 where

the second term vanishes. The remaining physical (gauge invariant) leading

term agrees precisely with the leading term of the full SM calculation. The

subleading term is gauge dependent and hence unphysical. We conclude that

physics uniquely fixes that questioned leading term, and it also implies that

Slavnov-Taylor (ST) identities are obviously not respected in the calculation of

Ref. [1].

For comparison, the corresponding result for a heavy top loop is given by

A
(f)
Hγγ = 2Q2

f Cf

[

1 + C0(Mf ,Mf ,Mf ; 0, 0,m2
H) (

1

2
m2

H − 2M2
f )

]

∗In a renormalizable gauge each W is represented by a W or ϕ line which yields 23+22 = 12
diagrams plus the Faddeev-Popov ghost loop.

†In the unitary gauge some technicalities with so called Lee-Yang terms [22] must be taken
into consideration also if dimensional regularization is applied.
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Figure 1: The H → γγ width as a function of the W mass at one loop order
(mH = 120 GeV, mt = 171.3 GeV).

xf→0∼ 2Q2
f Cf

[

1

6
xf +

7

720
x2

f +
1

1008
x3

f + · · ·
]

zf→0∼ 2Q2
f Cf

{[

1 +
1

4

(

π2 − ln2 zf

)

−
(

π2 − ln2 zf + ln zf

)

zf +

(

5

2
ln zf − 1

)

z2
f + · · ·

]

+iπ

[

−1

2
ln zf + (2 ln zf − 1) zf +

5

2
z2

f + · · ·
]}

(11)

with Cf = α
2π M

2
f , xf = m2

H/M
2
f and zf = 1/xf .

The H → γγ width is given by

ΓHγγ =

√
2Gµ

4πmH
|AHγγ |2 (12)

where A = A
(W )
Hγγ +

∑

f A
(f)
Hγγ . Figure 1 shows how the H → γγ partial width

as a function of MW for MW → ∞ tends to a constant. Figure 2 compares

the W mediated Higgs width in the heavy Higgs limit, with and without the

proper leading term. In Fig. 3 we finally compare the full SM prediction with

the W mediated result, all in one-loop approximation. By GWW we denoted

the result from Ref. [1].
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Figure 2: The partial Higgs width Γ(H → γγ) as a function of the Higgs mass
mH . The full line is the standard SM result, the dashed one the one calculated
in Ref. [1].

Figure 3: Comparison of the Γ(H → γγ) standard SM predictions (W loop
only, + leptons, + quarks) with the alternative prediction from Ref. [1]
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The decay H → 2γ has been investigated in great details including higher

order effects. The two-loop QCD corrections to the quark loops have been

presented in [23, 24, 25, 26]. The limit mH >> MW has been investigated at the

two loop level in [27]. The complete two-loop corrections are also known [28, 29].

Not surprisingly, they get large in the heavy Higgs range where strong coupling

problems show up. For a comprehensive overview of the Standard Model Higgs

profile see [30] and references therein.

Comments like the ones presented in this note have been presented in Refs. [31,

32, 33] in response of [1]. In our view, the result in question may be interpreted

as follows: in the regime mH ≫ MW only the contribution from the massless

transversal W ’s have been taken into account, while the contribution from the

[in this limit] physical charged massless Higgses has not been taken into account.

We conclude that the symmetry properties of the SM uniquely fix the cor-

rect answer for H → 2γ rate. Dimensional regularization (DREG) remains

the most adequate technical tool to preserve the gauge symmetry properties

in calculations exhibiting ultraviolet divergent integrals at some stage of a cal-

culation. This even is so if no overall renormalization is required like in the

H → 2γ process. Whatever regularization prescription is utilized at the end

one has to make sure that the Slavnov-Taylor and Ward-Takahashi identities

are respected. Limitations of dimensional regularization are well known in con-

nection with chiral structures: the anticommuting γ5 problem and the related

Adler-Bell-Jackiw triangle anomaly (see e.g. [34] and references therein). Sim-

ilarly, for supersymmetric structures dimensional reduction (DRED) is a more

adequate [35] regularization procedure. These technicalities however do not play

a role in the SM H → 2γ decay.

Because of the importance of the result in view of the Higgs search at the

LHC I find it appropriate to publicize these comments in spite of the fact that

essentially only known results are reviewed.
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