The muon $g - 2$: where we are, what does it tell us?

Fred Jegerlehner, DESY Zeuthen/Humboldt University Berlin

Symposium Dipole Moments (SYDM)
Outline of Talk:

- Introduction
- Hadronic Vacuum Polarization (HVP) – Models, Data, Lattice
- Hadronic Light-by-Light (HLbL) Contributions – Models, Data, Lattice
- Theory vs experiment: do we see New Physics?
Introduction

Particle with spin $\vec{s} \Rightarrow$ magnetic moment $\vec{\mu}$ (internal current circulating)

$$\vec{\mu} = g_\mu \frac{e \hbar}{2m_\mu c} \vec{s} ; \quad g_\mu = 2 \left(1 + a_\mu\right)$$

Dirac: $g_\mu = 2 , \quad a_\mu = \frac{\alpha}{2\pi} + \cdots$ muon anomaly

Electromagnetic Lepton Vertex

$$= (-ie) \bar{u}(p') \left[\gamma^\mu F_1(q^2) + i \frac{\alpha_{\mu\nu} q_\nu}{2m_\mu} F_2(q^2) \right] u(p)$$

$$F_1(0) = 1 ; \quad F_2(0) = a_\mu$$

a_μ responsible for the Larmor precession \Rightarrow need polarized muons orbiting

Shoot protons on target producing pions which decay by P violating weak process

$$\pi^+ \rightarrow \mu^+ \nu_\mu ; \quad \mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu$$
Larmor precession $\vec{\omega}$ of beam of spin particles in a homogeneous magnetic field \vec{B}

$$\omega_a = a \mu \frac{eB}{mc}$$

actual precession $\times 2 \sim 12'/\text{circle}$

Magic Energy: $\vec{\omega}$ is directly proportional to \vec{B} at magic energy ~ 3.1 GeV

$$\vec{\omega}_a = \frac{e}{m} \left[a \mu \vec{B} - \left(a \mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} \right]^{E \sim 3.1 \text{GeV}}_{\text{at ”magic } \gamma’’} \simeq \frac{e}{m} \left[a \mu \vec{B} \right]$$

CERN, BNL g-2 experiments
Stern, Gerlach 22: $g_e = 2$; Kusch, Foley 48: $g_e = 2 (1.00119 \pm 0.00005)$
To come –:
New muon $g - 2$ experiments at Fermilab and J-PARC: improve error by factor 4

\Rightarrow new muon $g - 2$ experiment: $\Delta a_\mu = a_\mu^{\text{exp}} - a_\mu^{\text{the}} = 4.3 \sigma$ theory as today

Reduction of hadronic uncertainty by factor 2 \Rightarrow $\Delta a_\mu = 7.7 \sigma$

That’s what we hope to achieve!
Standard Model Prediction for a_μ

What is new?

- new CODATA values for lepton mass ratios m_μ/m_e, m_μ/m_τ
- spectacular progress by Aoyama, Hayakawa, Kinoshita and Nio on 5–loop QED calculation 12672 diagrams (as well as improved 4–loop results 871 diagrams)
 - $O(\alpha^5)$ electron $g − 2$, substantially more precise $\alpha(a_e)$
 - Complete $O(\alpha^5)$ muon $g − 2$, settles better the QED part

QED Contribution

The QED contribution to a_μ has been computed through 5 loops

Growing coefficients in the α/π expansion reflect the presence of large terms coming from electron loops. Input:

$$\ln \frac{m_\mu}{m_e} \approx 5.3$$
\[a_e^{\exp} = 0.001\,159\,652\,180\,73(28) \quad \text{Gabrielse et al. 2008} \]

\[\alpha^{-1}(a_e) = 137.0359991657(331)(68)(46)(24)[0.25 \text{ ppb}] \quad \text{Aoyama et al 2012} \]

\[a_\mu^{\text{QED}} = 116\,584\,718.851 \left(\frac{0.029}{\alpha_{\text{inp}}} \right) \left(\frac{0.009}{m_e/m_\mu} \right) \left(\frac{0.018}{\alpha^4} \right) \left(\frac{0.007}{\alpha^5} \right)[0.36] \times 10^{-11} \]

The current uncertainty is well below the \(\pm 60 \times 10^{-11} \) experimental error from E821

<table>
<thead>
<tr>
<th># n of loops</th>
<th>(C_i \left[(\alpha/\pi)^n \right])</th>
<th>(a_\mu^{\text{QED}} \times 10^{11})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+0.5</td>
<td>116140973.289 (43)</td>
</tr>
<tr>
<td>2</td>
<td>+0.765 857 426(16)</td>
<td>413217.628 (9)</td>
</tr>
<tr>
<td>3</td>
<td>+24.050 509 88(32)</td>
<td>30141.9023 (4)</td>
</tr>
<tr>
<td>4</td>
<td>+130.8796(63)</td>
<td>381.008 (18)</td>
</tr>
<tr>
<td>5</td>
<td>+753.290(1.04)</td>
<td>5.094 (7)</td>
</tr>
<tr>
<td>tot</td>
<td></td>
<td>116584718.851 (0.036)</td>
</tr>
</tbody>
</table>
1 diagram
Schwinger 1948

7 diagrams
Peterman 1957, Sommerfield 1957

72 diagrams
Lautrup, Peterman, de Rafael 1974,
Laporta, Remiddi 1996

871 diagrams
Kinoshita 1999, Kinoshita, Nio 2004,
Ayoama et al. 2009/2012

estimates of leading terms
Karshenboim 93,
Czarnecki, Marciano 00, Kinoshita, Nio 05

all 12672 diagrams (fully automated numerical)
Ayoama et al. 2012
Universal 3–loop contribution:
(Remiddi et al., Remiddi, Laporta 1996 [27 years for 72 diagrams])

\[
a^{(6)}_{\ell \text{ uni}} = \left[\frac{28259}{5184} + \frac{17101}{810} \pi^2 \right.
\]
\[
- \frac{298}{9} \pi^2 \ln 2 + \frac{139}{18} \zeta(3)
\]
\[
+ \frac{100}{3} \left\{ \text{Li}_4\left(\frac{1}{2}\right) \right. \\
+ \frac{1}{24} \ln^4 2 - \frac{1}{24} \pi^2 \ln^2 2 \left. \right\} \\
- \frac{239}{2160} \pi^4 + \frac{83}{72} \pi^2 \zeta(3) \\
- \frac{215}{24} \zeta(5) \right) \left(\frac{\alpha}{\pi} \right)^3
\]
30 years of heroic efforts: demanding 4–loop contribution:
(Kinoshita et al., Aoyama, Hayakawa, Kinoshita and Nio 2007)

4-loop Group V diagrams. 47 self-energy-like diagrams of $M_{01} - M_{47}$ represent 518 vertex diagrams [by inserting the external photon vertex on the virtual muon lines in all possible ways].
5-loop self-energy-like diagrams. 32 gauge-invariant subsets. Improved coefficients \(a_e^{(8)} = -1.9097(20) (\alpha/\pi)^4 \) and new \(a_e^{(10)} = 9.16(58) (\alpha/\pi)^5 \) improve \(\alpha^{-1}(a_e) \) by factor 4.5!
Weak contributions

- Brodsky, Sullivan 67, ...
- Bardeen, Gastmans, Lautrup 72
- Higgs contribution tiny!
 \[a_{\mu}^{\text{weak}(1)} = (194.82 \pm 0.02) \times 10^{-11} \]
- Kukhto et al 92
- Potentially large terms \(\sim G_F m_{\mu}^2 \alpha \pi \ln \frac{M_Z}{m_{\mu}} \)
- Peris, Perrottet, de Rafael 95
- Quark-lepton (triangle anomaly) cancellation
- Czarnecki, Krause, Marciano 96

Heinemeyer, Stöckinger, Weiglein 04, Gribouk, Czarnecki 05

- Full 2-loop result
- Most recent evaluations: improved hadronic part (beyond QPM)
 \[a_{\mu}^{\text{weak}} = (154.0 \pm 1.0[\text{had}] \pm 0.3[m_H, m_t, 3 - \text{loop}]) \times 10^{-11} \]
 - New: \(m_H \) known!
 - (Knecht, Peris, Perrottet, de Rafael 02, Czarnecki, Marciano, Vainshtein 02, FJ 12, Gnendiger, Stöckinger, Stöckinger-Kim 13)
Hadronic stuff: the limitation to theory

General problem in electroweak precision physics:
contributions from hadrons (quark loops) at low energy scales

Leptons
\[e, \mu, \tau \]
\(\alpha \) : weak coupling
\[pQED \]

Quarks
\[u, d, s, \cdots \]
\(\alpha_s \) : strong coupling
\[pQCD \]

(a) Hadronic vacuum polarization \(O(\alpha^2), O(\alpha^3) \)
(b) Hadronic light-by-light scattering \(O(\alpha^3) \)
(c) Hadronic effects in 2-loop EWRC \(O(\alpha G_F m_\mu^2) \)

Light quark loops
↓
Hadronic “blobs”
Evaluation of a_μ^{had}

Leading non-perturbative hadronic contributions a_μ^{had} can be obtained in terms of $R_\gamma(s) \equiv \sigma^{(0)}(e^+e^- \to \gamma^* \to \text{hadrons})/\frac{4\pi\alpha^2}{3s}$ data via a Dispersion Relation (DR):

$$a_\mu^{\text{had}} = \left(\frac{\alpha m_\mu}{3\pi}\right)^2 \left(\int_{4m_\pi^2}^{E_{\text{cut}}^2} ds \frac{R_\gamma^{\text{data}}(s) \hat{K}(s)}{s^2} + \int_{E_{\text{cut}}^2}^{\infty} ds \frac{R_\gamma^{\text{pQCD}}(s) \hat{K}(s)}{s^2} \right)$$

- Experimental error implies theoretical uncertainty!
- Low energy contributions enhanced: $\sim 75\%$ come from region $4m_\pi^2 < m_{\pi\pi}^2 < M_\Phi^2$

Data: CMD-2, SND, KLOE, BaBar

$$a_\mu^{\text{had}(1)} = (690.7 \pm 4.7)[695.5 \pm 4.1] \times 10^{-10}$$

e$^+e^-$—data based [incl. BaBar MD09]
\[\gamma \text{ hard} \]

\[s = M_\phi^2; \ s' = s (1 - k), \ k = E_\gamma/E_{\text{beam}} \]

\[\pi^+ \pi^-, \ \rho_0 \]

\[e^+ \gamma \rightarrow \text{hadrons} \]

\[e^- \gamma \rightarrow \text{hadrons} \]

a) Initial state radiation (ISR), b) Standard energy scan.

Experimental input for HVP: VEPP-2000, BESIII-ISR [Talk Kloss, Denig]
Most precise ISR measurements in conflict. BESIII may resolve this

Recent/preliminary results:
- $e^+e^- \rightarrow \pi^+\pi^-$ from CMD-3
- $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ from Belle
- $e^+e^- \rightarrow K^+K^-$ from CMD-3
- $e^+e^- \rightarrow K^+K^-$ from SND
- $e^+e^- \rightarrow \omega\pi^0 \rightarrow \pi^0\pi^0\gamma$ from SND
- $e^+e^- \rightarrow \pi^+\pi^-$ from BES-III
HVP from lattice QCD

Lattice: ~ 3-10% quoted errors, but incomplete, Experiment: 0.6% errors

\[a_\mu^{(2)\text{had}} = \left(\frac{\alpha}{\pi} \right)^2 \int_0^\infty dQ^2 f(Q^2) \Pi(Q^2) \]

Plot from Laurent Lellouch

Brookhaven, Zeuthen, Mainz, Edinburgh, ...
Alternative method: analytic continuation

Compute HVP function via analytic continuation

\[
\tilde{\Pi}(Q^2) (Q_\mu Q_\nu - \delta_{\mu\nu} Q^2) = \int dt e^{\omega t} \int d^3 \vec{x} e^{i \vec{q} \cdot \vec{x}} \langle \Omega | T \{ J^E_\mu (\vec{x}, t) J^E_\nu (\vec{0}, 0) \} | \Omega \rangle
\]

- \(J^E_\mu (\vec{x}, t) \) electromagnetic current
- \(Q = (\vec{q}, -i \omega) \vec{q} \) spatial momentum, \(\omega \) the photon energy (input)

Advantage
- vary \(\omega \) smooth values for \(Q^2 = -\omega^2 + \vec{q}^2 \)
- can cover space-like and time-like momentum regions
- can reach small momenta and even zero momentum
- important condition:

\[
-Q^2 = \omega^2 - \vec{q}^2 < M_V^2, \quad \text{or} \quad \omega < E_{\text{vector}}
\]
different \vec{n} lead to consistent results

agreement with standard calculation

however, larger errors for $|\vec{n}| > 0$

Jansen et al.
The hadronic LbL: setup and problems

Hadrons in \(\langle 0 \vert T \{ A^\mu(x_1) A^\nu(x_2) A^\rho(x_3) A^\sigma(x_4) \} \vert 0 \rangle \)

Key object: full rank-four hadronic vacuum polarization tensor

\[
\Pi_{\mu\nu\lambda\rho}(q_1, q_2, q_3) = \int d^4x_1 \ d^4x_2 \ d^4x_3 \ e^{i(q_1x_1+q_2x_2+q_3x_3)}
\times \langle 0 \vert T \{ j_\mu(x_1) j_\nu(x_2) j_\lambda(x_3) j_\rho(0) \} \vert 0 \rangle.
\]

- non-perturbative physics
- covariant decomposition involves 138 Lorentz structures (43 gauge invariant)
- 28 can contribute to \(g - 2 \)
- fortunately, dominated by the pseudoscalar exchanges \(\pi^0, \eta, \eta', \ldots \) described by the effective Wess-Zumino Lagrangian
generally, pQCD useful to evaluate the short distance (S.D.) tail

the dominant long distance (L.D.) part must be evaluated using some low energy effective model which includes the pseudoscalar pions as well as the vector mesons \((\rho, \cdots)\) which play a dominant role (vector meson dominance mechanism); HLS, ENJL, general RLA, large \(N_c\) inspired ansätze, and others

Need appropriate low energy effective theory \(\Rightarrow\) amount to calculate the following type diagrams

LD contribution requires low energy effective hadronic models: simplest case \(\pi^0 \gamma \gamma\) vertex
Data show almost background free spikes of the \textbf{PS mesons}!

Basic problem: \((s, s_1, s_2)\)–domain of \(F_{\pi^0\gamma^*\gamma^*}(s, s_1, s_2)\); here \((0, s_1, s_2)\)–plane

Two scale problem: “open regions”

\begin{itemize}
 \item Data + Dispersion Relation, OPE,
 \item QCD factorization,
 \item Brodsky-Lepage approach
 \item Models constrained by data
\end{itemize}
Constraint I: $\Gamma(\pi^0 \gamma\gamma) \leftrightarrow$ effective WZW-Lagrangian

- The constant $e^2 \mathcal{F}_{\pi^0 \gamma \gamma}(m_{\pi^0}^2, 0, 0) = \frac{e^2 N_c}{12\pi^2 f_{\pi}} = \frac{\alpha}{\pi f_{\pi}} \approx 0.025 \text{ GeV}^{-1}$ well determined by $\pi^0 \to \gamma\gamma$ decay rate (from Wess-Zumino Lagrangian); experimental improvement needed!

- Information on $\mathcal{F}_{\pi^0 \gamma^* \gamma}(m_{\pi^0}^2, -Q^2, 0)$ from $e^+e^- \to e^+e^-\pi^0$ experiments

CELLO and CLEO measurement of the π^0 form factor $\mathcal{F}_{\pi^0 \gamma^* \gamma}(m_{\pi^0}^2, -Q^2, 0)$ at high space–like Q^2. Outdated by BaBar? Belle conforms with theory expectations!
Constraint II: VMD mechanism ↔ Brodsky-Lepage behavior

\[\mathcal{F}_{\pi^0\gamma^*\gamma}(m_{\pi}^2, -Q^2, 0) \approx \frac{1}{4\pi^2 f_\pi} \frac{1}{1+(Q^2/8\pi^2 f_\pi^2)} \sim \frac{2f_\pi}{Q^2} \]

then cannot miss to get reasonable result!

Measured is \(\mathcal{F}_{\pi^0\gamma^*\gamma}(m_{\pi}^2, -Q^2, 0) \) at high space–like \(Q^2 \), needed at external vertex is \(\mathcal{F}_{\pi^0\gamma^*\gamma}(Q^2, -Q^2, 0) \) or \(\mathcal{F}_{\pi^0\gamma^*\gamma}(q^2, q^2, 0) \) if integral to be evaluated in Minkowski space.

Can we check such questions experimentally or in lattice QCD?
<table>
<thead>
<tr>
<th>model</th>
<th>$a_{\mu}^{\pi^0} \cdot 10^{10}$</th>
<th>group</th>
</tr>
</thead>
<tbody>
<tr>
<td>EJLN/BPP</td>
<td>5.9(0.9)</td>
<td>Bijnens, Pallante, Prades 1995</td>
</tr>
<tr>
<td>Nonlocal quark model</td>
<td>6.72</td>
<td>Dorokhov, Broniowski 2008</td>
</tr>
<tr>
<td>Dyson-Schwinger Eq. Approach</td>
<td>5.75</td>
<td>Goecke, Fisher, Williams 2011</td>
</tr>
<tr>
<td>LMD+V/KN</td>
<td>(5.8 – 6.3)</td>
<td>Knecht, Nyffeler 2002</td>
</tr>
<tr>
<td>MV: LMD+V+OPE[WZW]</td>
<td>6.3(1.0)</td>
<td>Melnikov, Vainshtein 1997</td>
</tr>
<tr>
<td>Formfactor inspired by AdS/QCD</td>
<td>6.54</td>
<td>Cappiello, Cata, d'Ambrosio 2011</td>
</tr>
<tr>
<td>Chiral quark model</td>
<td>6.8</td>
<td>Greynat, de Rafael 2012</td>
</tr>
<tr>
<td>Magnetic susceptibility constraint</td>
<td>7.2</td>
<td>Nyffeler 2009</td>
</tr>
</tbody>
</table>

My estimation: Leading LbL contribution from PS mesons:

$$a_{\mu}[\pi^0, \eta, \eta'] \sim (93.91 = [63.14 + 14.87 + 15.90] \pm 12.40) \times 10^{-11}$$

Still controversial: ☐ VMD at external vertex ?
☐ Pion-pole approximation ?
\[a_\mu = F_2(0) ; \quad F_2(0) = \frac{1}{2\pi i} \int \frac{dq^2}{q^2} \text{Abs} \ F_2(q^2) \]

both time-like \[e^+e^- \to P\gamma \]
and space-like \[\gamma^*\gamma^* \to P \]
data needed as input

V. Pauk, M. Vanderhaeghen
V. Pauk, M. Vanderhaeghen: meson pole contributions

\[a_\mu[f'_1, f_1] \sim (6.4 = [5.0 + 1.4] \pm 2.0) \times 10^{-11} \]
Pauk, VdH

Expected contribution from axial mesons: Melnikov-Vainshtein form-factors

- Landau-Yang modified
 - ideal mixing:
 \[a_\mu[a_1, f'_1, f_1] \sim (7.55 = [1.89 + 5.19 + 0.47] \pm 2.71) \times 10^{-11} \]
Pauk, VdH

\[a_\mu[a_0, f'_0, f_0] \sim (-3.1 = [-0.63 - 1.84 - 0.61] \pm 0.8) \times 10^{-11} \]
Pauk, VdH

Expected contribution from \(q\bar{q} \) scalars:

\[a_\mu[a_0, f'_0, f_0] \sim (-5.98 = [-0.17 - 2.96 - 2.85] \pm 1.20) \times 10^{-11} \]
Pauk, VdH

\[a_\mu[f'_2, f_2, a'_2, a_2] \sim (1.1 = [0.79 + 0.07 + 0.22 + 0.02] \pm 0.1) \times 10^{-11} \]
Pauk, VdH
New:
- Axial vector meson contributions re-evaluated V. Pauk, F.J.
- Landau-Yang theorem constraint built in correctly
- Tensor meson contributions evaluated V. Pauk, M. Vanderhaeghen
- Results depending slightly on assuming nonet symmetry, ideal mixing etc

JN09 based on Nyffeler 09: the only result relaxing from pole approximation

\[a_{\mu}^{LbL;had} = (102 \pm 38) \times 10^{-11} \]

Note old MV result for axials:

\[a_{\mu}[a_1, f'_1, f_1] \sim (28\times3 = [7.02 + 19.38 + 1.74] \pm 5.63) \times 10^{-11} \]

versus new:

\[a_{\mu}[a_1, f'_1, f_1] \sim (7.55 = [1.89 + 5.19 + 0.47] \pm 2.71) \times 10^{-11} \]

Beyond single meson exchanges: 28 amplitudes to be determined by data
A bare π–loop (sQED) gives about -4×10^{-10}

The $\pi\pi\gamma^*$ vertex is always done using VMD

For $\pi\pi\gamma^*\gamma^*$ vertex two choices:

- Hidden Local Symmetry (HLS) model: only one γ^* is dressed
For BPP cut at 1 GeV but within 10% of higher

Bijnens et al.: use hadrons only below about 1 GeV

\[a_\mu^{\pi\text{-loop}} = (-2.0 \pm 0.5) \times 10^{-10} \]

Novel dispersive approach to HLBL: Colangelo, Hoferichter, Procura, Stoffer

Very ambitious long term project, requires all kind of data not yet available

cross section extractions very sensitive to radiative corrections

in following only \(\pi^0 \) and \(\pi^+\pi^- \) sector illustrated

Talks by Nyffeler and Pauk, Vanderhaeghen
Setting up the dispersive calculation

Split the HLbL tensor as follows:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi_{\mu\nu\lambda\sigma}^{0\text{-pole}} + \Pi_{\mu\nu\lambda\sigma}^{\pi\pi} + \Pi_{\mu\nu\lambda\sigma}^{F_{\text{QED}}} + \cdots$$

- Pion-pole: known
- The 2π intermediate states has cuts only in one channel and is what has to be calculated dispersively
- Contribution with two simultaneous cuts
analytic properties like the box diagram in sQED
triangle and bulb diagram required by gauge invariance
multiplication with FV gives the correct q^2 dependence (VMD mechanism)

Master formula for $a_{\mu}^{\pi\pi}$:

$$a_{\mu}^{\pi\pi} = e^6 \int \frac{d^4q_1}{(2\pi)^4} \frac{d^4q_2}{(2\pi)^4} \frac{I^{\pi\pi}}{s q_1^2 q_2^2 ((p + q_1)^2 - m^2) ((p - q_2)^2 - m^2)} ,$$

$$I^{\pi\pi} = \sum_{i \in \{1,2,3,6,14\}} (T_{i,s} I_{i,s} + 2T_{i,u} I_{i,u}) + 2T_{9,s} I_{9,s} + 2T_{9,u} I_{9,u} + 2T_{12,u} I_{12,u}$$

with $I_{i,(s,u)}$ dispersive integrals and $T_{i,(s,u)}$ known integration kernels

$$I_{1,s} = \frac{1}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{s' - s} \left(\frac{1}{s' - s} - \frac{s' - q_1^2 - q_2^2}{\lambda(s', q_1^2, q_2^2)} \right) \text{Im} \bar{h}^0_{++,+} \left(s', q_1^2, q_2^2; s, 0 \right) ,$$

$$I_{6,s} = \frac{75}{8\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{(s' - s)^2 (s' - q_1^2 - q_2^2)} \text{Im} \bar{h}^2_{+-,-} \left(s', q_1^2, q_2^2; s, 0 \right) .$$

Helicity amplitudes h up to $J = 2$ (S and D waves) extracted from data!
Dispersion relations for $\gamma^*\gamma^* \rightarrow \pi\pi$
Roy-Steiner eqs. = Dispersion relations + partial-wave expansion + crossing symmetry + unitarity + gauge invariance

- On-shell $\gamma\gamma \rightarrow \pi\pi$ prominent D wave resonance $f_2(1270)$
- $\gamma\gamma^* \rightarrow \pi\pi$
- $\gamma^*\gamma^* \rightarrow \pi\pi$ anomalous thresholds

Constraints:
- Low energy: pion polarization, ChPT
- Primakoff: $\gamma\pi \rightarrow \gamma\pi$
 at COMPASS, JLAB
- Scattering: $e^+e^- \rightarrow e^+e^-\pi^+\pi^-$
 $e^+e^- \rightarrow \pi\pi\gamma$
- Decays: $\omega, \phi \rightarrow \pi\pi\gamma$

Beyond single meson exchanges: 43 amplitudes to be determined by data
The role of models

Evaluation of a_{μ}^{LbL} in the large-N_c framework

- Knecht & Nyffeler and Melnikov & Vainshtein were using pion-pole approximation together with large-N_c $\pi^0\gamma\gamma$ form-factor

- FJ & A. Nyffeler: relax from pole approximation, using KN off-shell LMD+V form-factor

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}(p_\pi^2, q_1^2, q_2^2) = \frac{F_{\pi}}{3} \frac{\mathcal{P}(q_1^2, q_2^2, p_\pi^2)}{Q(q_1^2, q_2^2)}$$

$$\mathcal{P}(q_1^2, q_2^2, p_\pi^2) = h_7 + h_6 p_\pi^2 + h_5 (q_2^2 + q_1^2) + h_4 p_\pi^4 + h_3 (q_2^2 + q_1^2) p_\pi^2$$

$$+ h_2 q_1^2 q_2^2 + h_1 (q_2^2 + q_1^2)^2 + q_1^2 q_2^2 (p_\pi^2 + q_2^2 + q_1^2))$$

$$Q(q_1^2, q_2^2) = (q_1^2 - M_1^2) (q_1^2 - M_2^2) (q_2^2 - M_1^2) (q_2^2 - M_2^2)$$

all constants are constraint by SD expansion (OPE). Again, need data to fix parameters! (h_1, \cdots, h_7) Models: ENJL, HLS, LMD+V, etc
F. Jegerlehner

SYMD@DPG-Frühjahrstagung, Uni Heidelberg, 23.-24. März, 2015

Lattice regulator: model independent, approximations systematically improvable
LbL: Present

JN09: result relaxing from pole approximation, new axial + NLO-HLbL+tensor

\[a_{\mu}^{\text{LbL; had}} = (106 \pm 39) \times 10^{-11} \]

Summary of results

<table>
<thead>
<tr>
<th>Contribution</th>
<th>HKS</th>
<th>BPP</th>
<th>KN</th>
<th>MV</th>
<th>PdRV</th>
<th>N/JN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi^0, \eta, \eta')</td>
<td>82.7±6.4</td>
<td>85±13</td>
<td>83±12</td>
<td>114±10</td>
<td>114±13</td>
<td>99±16</td>
</tr>
<tr>
<td>(\pi, K) loops</td>
<td>−4.5±8.1</td>
<td>−19±13</td>
<td>−</td>
<td>0±10</td>
<td>−19±19</td>
<td>−19±13</td>
</tr>
<tr>
<td>axial vectors</td>
<td>1.7±1.7</td>
<td>2.5±1.0</td>
<td>−</td>
<td>22±5</td>
<td>15±10</td>
<td>22±5</td>
</tr>
<tr>
<td>scalars</td>
<td>−</td>
<td>−6.8±2.0</td>
<td>−</td>
<td>−</td>
<td>−7±7</td>
<td>−7±2</td>
</tr>
<tr>
<td>quark loops</td>
<td>9.7±11.1</td>
<td>21±3</td>
<td>−</td>
<td>−</td>
<td>2.3</td>
<td>21±3</td>
</tr>
<tr>
<td>total</td>
<td>89.6±15.4</td>
<td>83±32</td>
<td>80±40</td>
<td>136±25</td>
<td>105±26</td>
<td>116±39</td>
</tr>
</tbody>
</table>

Is this the final answer? How to improve? A limitation to more precise \(g−2\) tests?

Looking for new ideas to get ride of model dependence
Theory vs experiment: do we see New Physics?

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Value</th>
<th>Error</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>QED incl. 4-loops+5-loops</td>
<td>11 658 471.8851</td>
<td>0.036</td>
<td>Remiddi, Kinoshita ...</td>
</tr>
<tr>
<td>Leading hadronic vac. pol.</td>
<td>688.60</td>
<td>4.24</td>
<td>HLS driven</td>
</tr>
<tr>
<td>Subleading hadronic vac. pol.</td>
<td>-9.832</td>
<td>0.082</td>
<td>2012 update</td>
</tr>
<tr>
<td>NNLO hadronic vac. pol.</td>
<td>1.240</td>
<td>0.010</td>
<td>2014 KLMS</td>
</tr>
<tr>
<td>Hadronic light–by–light</td>
<td>10.6</td>
<td>3.9</td>
<td>evaluation (J&N 09/J 14)</td>
</tr>
<tr>
<td>Weak incl. 2-loops</td>
<td>15.40</td>
<td>0.10</td>
<td>CMV06/FJ12/BSS13</td>
</tr>
<tr>
<td>Theory</td>
<td>11 659 177.89</td>
<td>5.76</td>
<td>–</td>
</tr>
<tr>
<td>Experiment</td>
<td>11 659 209.1</td>
<td>6.3</td>
<td>BNL Updated</td>
</tr>
<tr>
<td>Exp.- The. 3.7 standard deviations</td>
<td>31.21</td>
<td>8.54</td>
<td>–</td>
</tr>
</tbody>
</table>

Standard model theory and experiment comparison [in units \(10^{-10}\)]. What represents the 4 \(\sigma\) deviation: ☐ new physics? ☐ a statistical fluctuation? ☐ underestimating uncertainties (experimental, theoretical)?

[do experiments measure what theoreticians calculate?]
New evaluations included:

<table>
<thead>
<tr>
<th>New contribution</th>
<th>Reference</th>
<th>$a_\mu \cdot 10^{11}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNLO HVP</td>
<td>Kurz et al. 2014</td>
<td>12.4 ± 0.1</td>
</tr>
<tr>
<td>NLO HLBL</td>
<td>Colangelo et al. 2014</td>
<td>3 ± 2</td>
</tr>
<tr>
<td>New axial exchange HLBL</td>
<td>Pauk, Vanderhaeghen, F.J. 2014</td>
<td>7.55 ± 2.71</td>
</tr>
<tr>
<td>Old axial exchange HLBL</td>
<td>Melnikov, Vainshtein 2004</td>
<td>22 ± 5</td>
</tr>
<tr>
<td>Tensor exchange HLBL</td>
<td>Pauk, Vanderhaeghen 2014</td>
<td>1.1 ± 0.1</td>
</tr>
<tr>
<td>Total change</td>
<td></td>
<td>+2.1 ± 3.4 [← 5]</td>
</tr>
</tbody>
</table>
Present leading uncertainty:

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Incl. ISR</th>
<th>Excl. ISR</th>
<th>Expt.</th>
<th>HLS Fits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHMZ10 (e^+e^-)</td>
<td>180.2 ± 4.9</td>
<td>182.8 ± 4.9</td>
<td>208.9 ± 6.3</td>
<td>3.6 σ</td>
</tr>
<tr>
<td>JS11 (e^+e^-+τ)</td>
<td>189.4 ± 5.4</td>
<td>181.1 ± 4.6</td>
<td>175.4 ± 5.8</td>
<td>3.6 σ</td>
</tr>
<tr>
<td>HLMNT11 (e^+e^-)</td>
<td>179.7 ± 6.0</td>
<td>177.7 ± 5.8</td>
<td>177.7 ± 5.8</td>
<td>3.3 σ</td>
</tr>
<tr>
<td>DHMZ10/JS11 (e^+e^-+τ)</td>
<td>180.2 ± 4.9</td>
<td>181.1 ± 4.6</td>
<td>175.4 ± 5.8</td>
<td>3.6 σ</td>
</tr>
<tr>
<td>BDDJ13* (e^+e^-+τ)</td>
<td>189.4 ± 5.4</td>
<td>181.1 ± 4.6</td>
<td>175.4 ± 5.8</td>
<td>3.7 σ</td>
</tr>
</tbody>
</table>

Comparison with other Results. Note: results depend on which value is taken for HLbL. JS11 and BDDJ13 includes 116(39) × 10^{-11} [JN], DHea09, DHMZ10, HLMNT11 and BDDJ12 use 105(26) × 10^{-11} [PdRV].
Most natural New Physics contributions: (examples)

neutral boson exchange: a) scalar or pseudoscalar and c) vector or axialvector, flavor changing or not, new charged bosons: b) scalars or pseudoscalars, d) vector or axialvector

Left: $m_\mu = M \ll M_0$

Right: $m_\mu \ll M_0 = M$

F. Jegerlehner

SYMD@DPG-Frühjahrstagung, Uni Heidelberg, 23.-24. März, 2015
In general:

\[\Delta a_\mu^{\text{NP}} = \alpha^{\text{NP}} \frac{m_\mu^2}{M_{\text{NP}}^2} \]

NP searches (LEP, Tevatron, LHC): typically \(M_{\text{NP}} >> M_W \), then \(\Delta a_\mu^{\text{exp-the}} = \Delta a_\mu^{\text{NP}} \) requires \(\alpha^{\text{NP}} \sim 1 \) spoiling perturbative arguments. Exception: 2HDM, SUSY \(\tan \beta \) enhanced coupling! Note: NP sensitivity enhanced for muon by \(\sim 40000 \) relative to electron, while \(a_e \) is only 2250 times more precise than \(a_\mu \) \(\Rightarrow \sim 18 \) in sensitivity!

Problem: LEP, Tevatron and LHC direct bounds on masses of possible new states

\[\text{[typically } M_X > 800 \text{ GeV } \]}

Need enhanced couplings! as in SUSY extensions of SM

- \(M_{\text{SUSY}} \) lightest SUSY particle; SUSY requires two Higgs doublets
- \(\tan \beta = \frac{v_1}{v_2}, v_i =< H_i > ; \ i = 1, 2 ; \ \tan \beta \sim m_t/m_b \sim 40 \ [4 - 40] \)
- muon \(g - 2 \) in contrast requires moderately light SUSY masses and in the pre-LHC era fitted rather well with expectations from SUSY
with M_{SUSY} a typical SUSY loop mass, sign given by Higgsino mass term μ

A particular role is played by the mass of the light Higgs

At tree level in the MSSM $m_h \leq M_Z$. This bound receives large radiative corrections from the t/\tilde{t} sector, which changes the upper bound to (Haber & Hempfling 1990)

$$m_h^2 \sim M_Z^2 \cos^2 2\beta + \frac{3\sqrt{2}G_\mu m_{\tilde{t}}^4}{2\pi^2 \sin^2 \beta} \ln \left(\frac{m_{\tilde{t}_1}m_{\tilde{t}_2}}{m_t^2}\right) + \cdots$$

which in any case is well below 200 GeV. A given value of m_h fixes the value of $m_{1/2}$ represented by $\{m_{\tilde{t}_1}, m_{\tilde{t}_2}\}$
if Higgs is established at 125 GeV (LHC/CERN) we must have $m_{1/2} > 800 GeV$ or higher!

Constraint on large $\tan\beta$ SUSY contributions as a function of M_{SUSY}. The horizontal band shows $\Delta a_\mu^{NP} = \delta a_\mu$. The region left of $M_{SUSY} \sim 500$ GeV is excluded by LHC searches. If $m_h \sim 125 \pm 1.5$ GeV actually $M_{SUSY} > 800$ GeV depending on details of the stop sector ($\{\tilde{t}_1, \tilde{t}_2\}$ mixing and mass splitting) and weakly on $\tan\beta$.

SUSY-GUT likely out, but no direct exclusion bounds on sneutrino-chargino and smuons-neutralino states!
Future

The big challenge: two complementary experiments: Fermilab with ultra hot muons and J-PARC with ultra cold muons (very different radiation) to come.

Provided deviation is real $3\sigma \rightarrow 9\sigma$ possible? Provided theory and needed cross section data improves the same as the muon $g - 2$ experiments!

Key: need substantial progress in non-perturbative QCD.

For muon $g - 2$:

- main obstacle: hadronic light-by-light [data, lattice QCD, RLA]
- progress in evaluating HVP: more data (BaBar, Belle, VEPP 2000, BESIII,...), in reach (recent progress Jansen et al, Wittig et al, Blum et al)
- in both cases lattice QCD will be the answer one day,
- also low energy effective RL and DR approach need be further developed.
And here we are:

Sensitivity of $g - 2$ experiments to various contributions. The increase in precision with the BNL $g - 2$ experiment is shown as a cyan vertical band. New Physics is illustrated by the deviation $(a_{\mu}^{\text{exp}} - a_{\mu}^{\text{the}})/a_{\mu}^{\text{exp}}$.
The challenge:

\[
\begin{align*}
\alpha_{\text{had},\text{VP}}^{[\text{LO}]} &= (6923 \pm 42) \times 10^{-11} + 58.82 \pm 0.36 \text{ ppm} \\
\alpha_{\text{had,VP}}^{[\text{NLO}]} &= (-98 \pm 1) \times 10^{-11} \\
\alpha_{\text{EW}} &= (154 \pm 1) \times 10^{-11} \\
\alpha_{\text{had},\text{LbL}} &= [(105 \div 115) \pm (26 \div 40)] \times 10^{-11} + 0.90 \pm 0.22 \text{ ppm} \\
\delta\alpha_{\mu}^{\text{exp},\text{present}} &= 63 \times 10^{-11} \pm 0.54 \text{ ppm} \\
\delta\alpha_{\mu}^{\text{exp},\text{future}} &= 16 \times 10^{-11} \pm 0.14 \text{ ppm}
\end{align*}
\]

Next generation experiments require a factor 4 reduction of the uncertainty, optimistically feasible is factor 2 we hope.
Summary

- Muon $g - 2$ is one of the most precisely measured quantities in particle physics.

- $a_{\mu} = (g_{\mu} - 2)/2$ very good monitor for physics beyond the SM: about $18 \approx 40000/2250$ more sensitive than a_e.

- At the same time it is the quantity showing a persisting discrepancy between theory and experiment $a_{\mu}^{\text{exp}} - a_{\mu}^{\text{the}}$ shows 3-4 σ deviation.

- Could turn to about 8 σ after new Fermilab experiment improvement by factor 4, provided theory improves by factor 2 at least.

- Low energy precision physics complementary to high energy as LHC.

- Non-perturbative hadronic effects are limiting precision of theoretical predictions: vacuum polarization and hadronic light-by-light scattering.
Non-perturbative hadronic modeling requires experimental data to constrain models, challenge for close collaboration between theory and experiment:
\[e^+e^- \rightarrow \text{hadrons} \quad \text{and} \quad \gamma(*)\gamma(*) \rightarrow \pi^0, \pi^+\pi^- , \text{other hadronic states} \]

At the present/future level of precision it depends on all physics incorporated in the SM of particle physics: electromagnetic, weak, and strong interaction effects and beyond that all possible new physics we are hunting for. Excludes light states with “normal size” couplings. Dark photon still a candidate.

New tools and experiments to pin down more precisely the hadronic effects are on the way!

The muon \(g - 2 \) remains a exciting and challenging topic!

Thank you for your attention!
LIFE OF A MUON: THE g-2 EXPERIMENT

Protons from AGS.

Hit Target.

Pions, weighing 1/6 proton, are created.

Pions decay to muons.

Muons are tiny magnets spinning on axis like tops.

Muons are fed into a uniform, doughnut-shaped magnetic field and travel in a circle.

After each circle, muon's spin axis changes by 12°, yet it keeps on traveling in the same direction.

One of 24 detectors see an electron, giving the muon spin direction; g-2 is this angle, divided by the magnetic field the muon is traveling through in the ring.

After circling the ring many times, muons spontaneously decay to electron, (plus neutrinos,) in the direction of the muon spin.
Backup Slides

Summary HVP:

- Dominating $\pi\pi$ channel measured with < 1% accuracy
 - most precise ISR measurements (KLOE, BABAR) in conflict with each other
 - cross check by BESIII - ISR
 - VEPP-2000 aims for unprecedented accuracy 0.3%

- Higher multiplicities dominated by BABAR ISR measurements
 - cross check and improvement expected by VEPP-2000, BESIII

- BELLE-II in intermediate future ?!

- Issues: - Radiative corrections
 - Precise formfactor models in MC generators
 - FSR modeling
Lattice: Lots of interest, work on hadronic contributions, esp. HVP

- Statistical errors (sub) 1%
- Several groups done/doing physical m_π (m_{quark}) simulations
- Much effort on understanding systematics
- 2-3% total error on connected HVP in 2 years possible
- May be achievable for disconnected too

Summary HLBL:

- Huge experimental progress in all kinematic ranges
- KLOE-II and BESIII will measure pseudoscalar TFF in low Q2 range
- Hadronic models need to be validated by data
 - exptl. accuracy in most cases not yet precise enough
Dispersion relations for HLbL calculation

- close interplay btw. theory and experiment

Lattice: QCD+QED promising, but significant systematics. Present running with $m_\pi = 170$ MeV and investigating excited state contamination

Dynamical QED+QCD is coming too

- need more groups working on it!

- Interest in 4pt function, $\pi \to \gamma^*\gamma^*$, other simpler quantities
Effective field theory: the Resonance Lagrangian Approach

HVP dominated by spin 1 resonance physics! need theory of $\rho, \omega, \phi, \cdots$

- Principles to be included: Chiral Structure of QCD, VMD & electromagnetic gauge invariance.

- General framework: resonance Lagrangian extension of chiral perturbation theory (CHPT), i.e. implement VMD model with Chiral structure of QCD. Specific version Hidden Local Symmetry (HLS) effective Lagrangian Bando, Kugo, Yamawaki. First applied to HLbL of muon $g - 2$ Hayakawa, Kinoshita, Sanda.

Global Fit strategy:
Data below $E_0 = 1.05$ GeV (just above the ϕ) constrain effective Lagrangian couplings, using 45 different data sets (6 annihilation channels and 10 partial width decays).

- Effective theory predicts cross sections:
 $$\pi^+\pi^-, \pi^0\gamma, \eta\gamma, \eta'\gamma, \pi^0\pi^+\pi^-, K^+K^-, K^0\bar{K}^0$$
 (83.4%).
4\pi, 5\pi, 6\pi, \eta\pi, \omega\pi and regime \(E > E_0 \) evaluated using data directly and pQCD for perturbative region and tail

- Including self-energy effects is mandatory (\(\gamma\rho \)-mixing, \(\rho\omega \)-mixing ..., decays with proper phase space, energy dependent width etc)

- Method works in reducing uncertainties by using indirect constraints

- Able to reveal inconsistencies in data, e.g. KLOE vs BaBar

Main goal:
- Single out representative effective resonance Lagrangian by global fit

 is expected to help in improving EFT calculations of hadronic light-by-light scattering (such concept so far missing)

- could help improving uncertainty on hadronic VP (besides \(e^+e^- \) and \(\tau \) decay data other experimental information)
Fit of $\tau + \text{PDG vs } \pi^+\pi^-$—data

Benayoun et al 2012/13
The $\pi\pi$ scattering phase of our HLS prediction
Try exploiting possible new experimental constraints from $\gamma \gamma \rightarrow$ hadrons

mostly single-tag events: KLOE, KEDR (taggers), BaBar, Belle, BES III (high luminosity)

Dalitz-decays: $\rho, \omega, \phi \rightarrow \pi^0(\eta)e^+e^-$ Novosibirsk, NA60, JLab, Mainz, Bonn, Jülich, BES
would be interesting, but is buried in the background

all in conjunction with DR Vanderhaeghen et al 2012/14
What do we see in the muon $g - 2$??? You may find what it is!

Still a question: do we calculate what experiments measure?

Resent: Arbuzov and Kopylowa 2013: effect of real radiation on a_μ:

$$\Delta a_f^{(1,\kappa)} = \frac{\alpha}{2\pi} \left(1 + \delta a_f^{(\kappa)} \right)$$

$$\delta a_f^{(\kappa)} = \left(\frac{1}{4} + \frac{1}{2} \ln |\kappa| \right) \kappa + O(\kappa^2)$$

as it should smooth as $\kappa \to 0$ ("offshellness" of the muon)

Assume

$$\Delta a_\mu^{\text{exp-SM}} \sim 3 \times 10^{-9} \approx \frac{\alpha}{2\pi} \delta a_\mu^{(\kappa)}$$

$$\Rightarrow \quad \kappa \simeq -3.5 \times 10^{-7} ; \quad \kappa m_\mu \sim 35 \text{ eV , \quad remember } p_\mu \simeq 3.1 \text{ GeV}$$
Recent: τ (charged channel) vs. $e^+ e^-$ (neutral channel) puzzle resolved
F.J. & R. Szafron, $\rho - \gamma$ interference
(absent in charged channel):

$$-i \Pi_{\gamma\rho}^{\mu\nu}(s) = \ldots$$

$u_0(s) = r_{\rho\gamma}(s) R_{IB}(s) u_-(s)$

- τ require to be corrected for missing $\rho - \gamma$ mixing!
- results obtained from $e^+ e^-$ data is what goes into a_μ
- off-resonance tiny for ω, ϕ in $\pi\pi$ channel (scaled up $\Gamma_V/\Gamma(V \rightarrow \pi\pi)$
<table>
<thead>
<tr>
<th>τ decays</th>
<th>ALEPH 1997</th>
<th>390.75 ± 2.65 ± 1.94</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEPH 2005</td>
<td>388.74 ± 4.00 ± 2.07</td>
<td></td>
</tr>
<tr>
<td>OPAL 1999</td>
<td>380.25 ± 7.27 ± 5.06</td>
<td></td>
</tr>
<tr>
<td>CLEO 2000</td>
<td>391.59 ± 4.11 ± 6.27</td>
<td></td>
</tr>
<tr>
<td>Belle 2008</td>
<td>394.67 ± 0.53 ± 3.66</td>
<td></td>
</tr>
<tr>
<td>τ combined</td>
<td>391.06 ± 1.42 ± 2.06</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$e^+e^- + \text{CVC}$</th>
<th>CMD-2 2006</th>
<th>386.58 ± 2.76 ± 2.59</th>
</tr>
</thead>
<tbody>
<tr>
<td>SND 2006</td>
<td>383.99 ± 1.40 ± 4.99</td>
<td></td>
</tr>
<tr>
<td>KLOE 2008</td>
<td>380.21 ± 0.34 ± 3.27</td>
<td></td>
</tr>
<tr>
<td>KLOE 2010</td>
<td>377.35 ± 0.71 ± 3.50</td>
<td></td>
</tr>
<tr>
<td>BABAR 2009</td>
<td>389.35 ± 0.37 ± 2.00</td>
<td></td>
</tr>
<tr>
<td>e^+e^- combined</td>
<td>385.12 ± 0.87 ± 2.18</td>
<td></td>
</tr>
</tbody>
</table>

$I=1$ part of $a_{\mu}^{\text{had}}[\pi\pi]$
<table>
<thead>
<tr>
<th>(\tau) decays</th>
<th>ALEPH 1997</th>
<th>385.63 ± 2.65 ± 1.94</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEPH 2005</td>
<td>383.54 ± 4.00 ± 2.07</td>
<td></td>
</tr>
<tr>
<td>OPAL 1999</td>
<td>375.39 ± 7.27 ± 5.06</td>
<td></td>
</tr>
<tr>
<td>CLEO 2000</td>
<td>386.61 ± 4.11 ± 6.27</td>
<td></td>
</tr>
<tr>
<td>Belle 2008</td>
<td>389.62 ± 0.53 ± 3.66</td>
<td></td>
</tr>
<tr>
<td>(\tau) combined</td>
<td>385.96 ± 1.40 ± 2.10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(e^+ e^- + \text{CVC})</th>
<th>CMD-2 2006</th>
<th>386.58 ± 2.76 ± 2.59</th>
</tr>
</thead>
<tbody>
<tr>
<td>SND 2006</td>
<td>383.99 ± 1.40 ± 4.99</td>
<td></td>
</tr>
<tr>
<td>KLOE 2008</td>
<td>380.21 ± 0.34 ± 3.27</td>
<td></td>
</tr>
<tr>
<td>KLOE 2010</td>
<td>377.35 ± 0.71 ± 3.50</td>
<td></td>
</tr>
<tr>
<td>BABAR 2009</td>
<td>389.35 ± 0.37 ± 2.00</td>
<td></td>
</tr>
<tr>
<td>(e^+ e^-) combined</td>
<td>385.12 ± 0.87 ± 2.18</td>
<td></td>
</tr>
</tbody>
</table>

\(a_\mu[\pi\pi], I = 1, (0.592 - 0.975) \text{ GeV} \times 10^{-10} \)

\(l=1 \) part of \(a_\mu^{\text{had}}[\pi\pi] \)
$|F_\pi(E)|^2$ in units of e^+e^- I=1 (CMD-2 GS fit)

Best “proof”:
$|F_\pi(E)|^2$ in units of $e^+e^- |l=1$ (CMD-2 GS fit)

Best “proof”:

[Graphs showing data and fits from BABAR, Aleph, and CLEO collaborations]
Is our model viable?

How photons couple to pions? Use $\gamma\gamma \rightarrow \pi^+\pi^-, \pi^0\pi^0$ as a probe: what we see: 1) below about 1 GeV photons couple to pions as point-like objects (i.e. to the charged ones overwhelmingly), 2) at higher energies the photons see the quarks exclusively and form the prominent tensor resonance $f_2(1270)$. Plotted $2\sigma(\pi^0\pi^0)$ vs. $\sigma(\pi^+\pi^-)$

Strong tensor meson resonance in $\pi\pi$ channel $f_2(1270)$ with photons directly probe the quarks! Contribution to $a_{\mu}^{\text{had LbL}}$?
Main issues

- region 1.2 to 2 GeV bad data; test-ground exclusive vs inclusive R measurements (more than 30 channels!) Who will do it? BES III radiative return!
Cross sections (nb)

\begin{align*}
\gamma \pi^+ \pi^- & \quad \pi^+ \pi^- \\
\pi^+ \pi^- & \quad \pi^+ \pi^- \\
K^+ K^- K^+ K^- & \quad K^+ K^- K^+ K^- \\
K^+ K^- K^+ K^- & \quad K^+ K^- K^+ K^- \\
K^+ K^- & \quad K^+ K^- \\
2\pi^+ 2\pi^- & \quad 3\pi^+ 3\pi^- \\
\text{ppbar} &
\end{align*}

\begin{align*}
\pi^+ \pi^- & \quad \pi^+ \pi^- \\
\pi^+ \pi^- & \quad \pi^+ \pi^- \\
K^+ K^- K^+ K^- & \quad K^+ K^- K^+ K^- \\
K^+ K^- K^+ K^- & \quad K^+ K^- K^+ K^- \\
K^+ K^- & \quad K^+ K^- \\
K^+ K^- K^+ K^- & \quad K^+ K^- K^+ K^- \\
K^+ K^- K^+ K^- & \quad K^+ K^- K^+ K^- \\
K^+ K^- K^+ K^- & \quad K^+ K^- K^+ K^- \\
\pi^+ \pi^- & \quad \pi^+ \pi^- \\
\pi^+ \pi^- & \quad \pi^+ \pi^- \\
2\pi^+ 2\pi^- & \quad 3\pi^+ 3\pi^- \\
\text{ppbar} &
\end{align*}

\begin{align*}
\pi^+ \pi^- & \quad \pi^+ \pi^- \\
\pi^+ \pi^- & \quad \pi^+ \pi^- \\
K^+ K^- K^+ K^- & \quad K^+ K^- K^+ K^- \\
K^+ K^- K^+ K^- & \quad K^+ K^- K^+ K^- \\
K^+ K^- & \quad K^+ K^- \\
K^+ K^- K^+ K^- & \quad K^+ K^- K^+ K^- \\
K^+ K^- K^+ K^- & \quad K^+ K^- K^+ K^- \\
K^+ K^- K^+ K^- & \quad K^+ K^- K^+ K^- \\
\pi^+ \pi^- & \quad \pi^+ \pi^- \\
\pi^+ \pi^- & \quad \pi^+ \pi^- \\
2\pi^+ 2\pi^- & \quad 3\pi^+ 3\pi^- \\
\text{ppbar} &
\end{align*}
discrepancy BaBar vs KLOE $\pi\pi$ data. Who can clarify it? BES III radiative return!

Davier&Malaescu 2013
Davier&Malaescu 2013
NNLO HVP effects

<table>
<thead>
<tr>
<th>Class</th>
<th>results Kurz et al</th>
<th>my evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_\mu^{(3a)}$</td>
<td>$= 0.80 \times 10^{-10}$</td>
<td>$0.782(77) \times 10^{-10}$</td>
</tr>
<tr>
<td>$a_\mu^{(3b)}$</td>
<td>$= -0.41 \times 10^{-10}$</td>
<td>$-0.403(37) \times 10^{-10}$</td>
</tr>
<tr>
<td>$a_\mu^{(3b,lbl)}$</td>
<td>$= 0.91 \times 10^{-10}$</td>
<td>$0.900(77) \times 10^{-10}$</td>
</tr>
<tr>
<td>$a_\mu^{(3c)}$</td>
<td>$= -0.06 \times 10^{-10}$</td>
<td>$-0.0544(7) \times 10^{-10}$</td>
</tr>
<tr>
<td>$a_\mu^{(3d)}$</td>
<td>$= 0.0005 \times 10^{-10}$</td>
<td>$5.22(15) \times 10^{-14}$</td>
</tr>
<tr>
<td>$a_\mu^{\text{had,NNLO}}$</td>
<td>$= 12.4(1) \times 10^{-11}$</td>
<td>$12.25(12) \times 10^{-11}$</td>
</tr>
</tbody>
</table>
NNLO HLBL effects

New NNLO HLBL

Colangelo et al. 2014

A hadronic light-by-light next to leading order correction, which is of the same order as the NNLO corrections.

is estimated to yield

\[a_\mu^{\pi^-\text{pole},\text{NLO}} = 1.5 \times 10^{-11} \]

using a simple VMD form-factor, which yields \(a_\mu^{\pi^-\text{pole},\text{LO}} = 57.2 \times 10^{-11} \). Including other contributions gives an estimate:

\[a_\mu^{\text{HLbL},\text{NLO}} = (3 \pm 2) \times 10^{-11} \]

as a correction to \(a_\mu^{\text{HLbL},\text{LO}} = (116 \pm 39) \times 10^{-11} \).