The Standard Model as a low energy effective theory: what is triggering the Higgs mechanism and inflation?

Fred Jegerlehner, DESY Zeuthen/Humboldt University Berlin

also see: www-com.physik.hu-berlin.de/~fjeger/Durham_1[2,3,4].pdf
Outline of Talk:

- Introduction
- Low energy effective QFT of a cutoff system
- Matching conditions
- SM RG evolution to the Planck scale
- The issue of quadratic divergences in the SM
- Remark on the impact on inflation
- Conclusion
Introduction

The path to physics at the Planck scale

String Paradigm: the closer we look the more symmetric the world looks

M–Theory \sim Strings \leftarrow SUGRA \leftarrow SUSY \leftarrow SM,

Emergence Paradigm: the less close you look the simpler it looks

Ether \sim Planck medium \rightarrow low energy effective QFT \rightarrow SM.

The “true world” seen from far away: unlike in renormalized QFT, here the relationship between bare and renormalized parameters obtains a physical meaning (Landau 1955, Wilson 1971, ⋯)
LHC Higgs mass scan by ATLAS and CMS
Higgs finally found as expected, so what?
Higgs mass found by ATLAS and CMS agrees perfectly with the indirect bounds.

Higgs mass found in very special mass range 125.5 ± 1.5 GeV
Common Folklore: hierarchy problem requires SUSY extension of the SM (no quadratic divergences)

Do we need new physics? Stability bound of Higgs potential in SM:

\[M_H < 180 \text{ GeV} \]

– first 2-loop analysis, knowing \(m_t \)

SM Higgs remains perturbative up to scale \(\Lambda \) if it is light enough (upper bound=avoiding Landau pole) and Higgs potential remains stable (\(\lambda > 0 \)) if Higgs mass is not too light [parameters used: \(m_t = 175[150 - 200] \text{ GeV} \); \(\alpha_s = 0.118 \)]
Key object of our interest: the Higgs potential

\[V = \frac{m^2}{2} H^2 + \frac{\lambda}{24} H^4 \]

- Higgs mechanism
- when \(m^2 \) changes sign and \(\lambda \) stays positive \(\Rightarrow \) first order phase transition
- vacuum jumps from \(v = 0 \) to \(v \neq 0 \)

Note: the **bare Lagrangian** is the true Lagrangian (renormalization is just reshuffling terms) the change in sign of the bare mass is what determines the phase

- Hierarchy problem is a problem concerning the relationship between **bare** and **renormalized** parameters
- bare parameters are **not accessible to experiment** so who cares?
SM as a low energy effective theory

Our paradigm: at Planck scale a physical bare cutoff system exists ("the ether") with $\Lambda = M_{Pl}$ as a real physical cutoff

- low energy expansion in E/Λ lets us see a renormalizable effective QFT: the SM
 - as present (and future) accelerator energies $E << << M_{Pl}$
 - all operators $\text{dim} > 4$ far from being observable

- in this scenario the relation between bare and renormalized parameters is physics: bare parameters predictable from known renormalized ones

- all so called UV singularities (actually finite now) must be taken serious including quadratic divergences — cutoff finite \Rightarrow no divergences!

- impact of the very high Planck cutoff is that the local renormalizable QFT structure of the SM is presumably valid up to 10^{17} GeV, this also justifies the application of the SM RG up to high scales.
Low energy effective QFT of a cutoff system

The low energy expansion:

\[G(p, \Lambda) = \sum_{n, \ell} c_{n, \ell} \left(\frac{p}{\Lambda} \right)^n \left(\ln \frac{p^2}{\Lambda^2} \right)^\ell \]

\[\left\{ \Lambda \frac{\partial}{\partial \Lambda} + \beta(\cdots) \frac{\partial}{\partial g} + \delta(\cdots) m \frac{\partial}{\partial m} - N \gamma(\cdots) \right\} G(p, \Lambda) = \Delta_\Lambda G(p, \Lambda) \]

inhomogeneous response equation to change of cut–off (very complicated)

Low energy effective: drop power suppressed terms

\[G_{\text{preasymptotic}}(p, \Lambda) = \sum_{\ell} c_{0, \ell} \left(\ln \frac{p^2}{\Lambda^2} \right)^\ell + O(p^2/\Lambda^2) \]

\[\left\{ \Lambda \frac{\partial}{\partial \Lambda} + \beta(\cdots) \frac{\partial}{\partial g} + \delta(\cdots) m \frac{\partial}{\partial m} - N \gamma(\cdots) \right\} G_{\text{preasymptotic}}(p, \Lambda) \equiv 0 \]

satisfies homogeneous PDE = RG with respect to scale \(\Lambda \) (means \(\Lambda \) is not cut-off any more, just scale parameter)
Crucial point: cutoff Λ_{Pl} is physical i.e. a finite number and by a finite renormalization (renormalizing parameters and fields only) by change of scale $p_i \rightarrow \kappa p_i$ i.e. momenta in units of Λ rescaled to momenta in units of \overline{MS} scale μ i.e. $\kappa = \Lambda/\mu$.

- the preasymptotic theory is a local relativistic QFT

- Key observation: elementary particle interactions have rather weak coupling such that perturbation theory works in general

- Keep in mind: Λ_{Pl} is very very high, all cutoff structure killed at present accelerator energies

In contrast: low energy effective hadron theories suffer from close-by cutoff.
<table>
<thead>
<tr>
<th>dimension</th>
<th>operator</th>
<th>scaling behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>∞–many</td>
<td></td>
</tr>
<tr>
<td></td>
<td>irrelevant</td>
<td></td>
</tr>
<tr>
<td>↑</td>
<td>operators</td>
<td></td>
</tr>
<tr>
<td>no data</td>
<td>$d = 6$</td>
<td>$(\nabla \phi)^2, (\bar{\psi} \psi)^2, \cdots$</td>
</tr>
<tr>
<td>$</td>
<td></td>
<td>$d = 5$</td>
</tr>
<tr>
<td></td>
<td>$d = 4$</td>
<td>$(\partial \phi)^2, \phi^4, (F_{\mu \nu})^2, \cdots$</td>
</tr>
<tr>
<td></td>
<td>$d = 3$</td>
<td>$\phi^3, \bar{\psi} \psi$</td>
</tr>
<tr>
<td></td>
<td>$d = 2$</td>
<td>$\phi^2, (A_\mu)^2$</td>
</tr>
<tr>
<td></td>
<td>$d = 1$</td>
<td>ϕ</td>
</tr>
</tbody>
</table>

$tamed$ by symmetries

$⇒$ require \textbf{chiral symmetry, gauge symmetry, supersymmetry???}

Up to date and for a long time to come there is and will be no direct experimental information on $O(E/\Lambda_{Pl})$ effects (but bounds on absence of such terms).
infinite tower of $\dim > 4$ irrelevant operators not seen at low energy

\Rightarrow simplicity of SM! Blindness to details implies more symmetries (Yang-Mills structure [gauge cancellations] with small groups: doublets, triplets besides singlets, Lorentz invariance, anomaly cancellation and family structure, triviality for space-time dimensions $\dim > 4$ [D=4 boarder case for interacting world at long distances, has nothing to do with compactification, extra dimensions just trivialize by themselves], etc.)

problems are the $\dim < 4$ relevant operators, in particular the mass terms, require “tuning to criticality”. In the symmetric phase of the SM, where there is only one mass (the others are forbidden by the known chiral and gauge symmetries), the one in front of the Higgs doublet field.
The symmetric phase Higgs fine tuning has the form

\[m_0^2 = m^2 + \delta m^2 \; ; \; \delta m^2 = \frac{\Lambda^2}{16\pi^2} C \]

with a coefficient typically \(C = O(1) \). To keep the renormalized mass at some small value, which can be seen at low energy, \(m_0^2 \) has to be adjusted to compensate the huge number \(\delta m^2 \) such that about 35 digits must be adjusted in order to get the observed value around the electroweak scale. **Our Hierarchy Problem!**

In the following we consider the SM as a strictly renormalizable theory, regularized as usual by dimensional regularization in \(D = 4 - \varepsilon \) space-time dimensions, such that the \(\overline{\text{MS}} \) parametrization and the corresponding RG can be used in the well known form.
Matching conditions

\(m_{i0} \) bare , \(m_i \) the \(\overline{\text{MS}} \) and \(M_i \) the on-shell masses; \(\mu_0 \) bare \(\mu \) \(\overline{\text{MS}} \) scale

\[
\text{Reg} = \frac{2}{\varepsilon} - \gamma + \ln 4\pi + \ln \mu_0^2
\]

UV regulator term in bare quantities

\(\ast \) bare \(\rightarrow \overline{\text{MS}} : \text{Reg} \rightarrow \ln \mu^2 \)

\(\ast \) \(\overline{\text{MS}} \) renormalization scheme is the favorite choice to study the scale dependence of the theory i.e. need \(\overline{\text{MS}} \) values of input parameters

\(\ast \) physical values of parameters determined by physical processes i.e. in on-shell renormalization scheme primarily

What we need:

\(\ast \) relationship between bare and \(\overline{\text{MS}} \) renormalized parameters

\[
m_{b0}^2 \overset{\text{def}}{=} m_b^2 + \delta M_b^2|_{\text{MS}} = M_b^2 + \delta M_b^2|_{\text{OS}} ; \quad \delta M_b^2|_{\text{MS}} = (\delta M_b^2|_{\text{OS}})_{\text{UV sing}}
\]
relationship between $\overline{\text{MS}}$ and on-shell renormalized parameters

\[
m_b^2 = M_b^2 + \delta M_b^2\big|_{\text{OS}} - \delta M_b^2\big|_{\overline{\text{MS}}} = M_b^2 + \left(\delta M_b^2\big|_{\text{OS}}\right)_{\text{Reg}=\ln \mu^2}.
\]

\[
m_f^2 = M_f^2 + \delta M_f^2\big|_{\text{Reg}=\ln \mu^2} \quad \text{for bosons, matching scale } \mu = M_b
\]

\[
m_f^2 = M_f^2 + \delta M_f^2\big|_{\text{Reg}=\ln \mu^2} \quad \text{for fermions, matching scale } \mu = M_f
\]

Similar relations apply for the coupling constants g, g', λ and y_f, which, however, usually are fixed using the mass-coupling relations in terms of the masses and the Higgs VEV v, which is determined by the Fermi constant $v = (\sqrt{2} G_F)^{-1/2}$.

\[
M_Z = 91.1876(21) \text{ GeV}, \quad M_W = 80.385(15) \text{ GeV}, \quad M_t = 173.5(1.0) \text{ GeV},
\]

\[
G_F = 1.16637 \times 10^{-5} \text{ GeV}^{-2}, \quad \alpha^{-1} = 137.035999, \quad \alpha_s(M_Z^2) = 0.1184(7).
\]

For the Higgs mass we adopt $M_H = 125.5 \pm 1.5 \text{ GeV}$. Remarkably: for given Higgs mass $m_t(M_t) \approx M_t$ within 1 GeV! F.J., Kalmykov, Kniehl 2012
SM RG evolution to the Planck scale

Using RG coefficient function calculations by

Jones, Machacek&Vaughn, Tarasov&Vladimirov, Vermasseren&vanRitbergen,
Melnikov&van Ritbergen, Czakon, Chetyrkin et al, Steinhauser et al, Bednyakov et al.

Recent application to SM vacuum stability

Shaposhnikov et al, Degrassi et al, Maina, Hamada et al, Bednyakov et al ...

Solve SM coupled system of RG equations:

- for gauge couplings $g_3 = (4\pi\alpha_s)^{1/2}$, $g_2 = g$ and $g_1 = g'$
- for the Yukawa coupling y_t (other Yukawa couplings negligible)
- for the Higgs potential parameters λ and $\ln m^2$

with \overline{MS} initial values obtained by evaluating the matching conditions
Note: all dimensionless couplings satisfy the same RG equations in the broken and in the unbroken phase.

The $\overline{\text{MS}}$ Higgs VEV square is then obtained by $v^2(\mu^2) = \frac{6m^2(\mu^2)}{\lambda(\mu^2)}$ and the other masses by the relations.

The RG equation for $v^2(\mu^2)$ follows from the RG equations for masses and massless coupling constants using one of the relations:

$$v^2(\mu^2) = 4 \frac{m^2_W(\mu^2)}{g^2(\mu^2)} = 4 \frac{m^2_Z(\mu^2) - m^2_W(\mu^2)}{g'^2(\mu^2)} = 2 \frac{m^2_f(\mu^2)}{y_f^2(\mu^2)} = 3 \frac{m^2_H(\mu^2)}{\lambda(\mu^2)}.$$

As a key relation we will use F.J., Kalmykov, Veretin 2003:

$$\mu^2 \frac{d}{d\mu^2}v^2(\mu^2) = 3 \mu^2 \frac{d}{d\mu^2} \left[\frac{m^2_H(\mu^2)}{\lambda(\mu^2)} \right] \equiv v^2(\mu^2) \left[\gamma_{\mu^2} - \frac{\beta_\lambda}{\lambda} \right].$$
The proper $\overline{\text{MS}}$ definition of a running fermion mass is

$$m_f(\mu^2) = \frac{1}{\sqrt{2}} v(\mu^2) y_f(\mu^2).$$

RG for top quark mass

$$\mu^2 \frac{d}{d\mu^2} \ln m_t^2 = \gamma_t(\alpha_s, \alpha); \quad \gamma_t(\alpha_s, \alpha) = \gamma_t^{QCD} + \gamma_t^{EW}; \quad \gamma_t^{EW} = \gamma_{yt} + \frac{1}{2} \gamma_y m^2 - \frac{1}{2} \beta_\lambda \lambda,$$

Similar for other masses.

Note: RG equations calculated in the broken phase are indeed as it should be identical to the ones in the symmetric phase. However, this is true if and only if tadpole terms are taken into account F.J., Kalmykov, Veretin/Kniehl 2003/2012
Typical result:

Running of the SM gauge couplings $g_1 = \sqrt{5/3}g_Y, g_2, g_3$.

Find unstable vacuum (metastable in effective potential approach) $\lambda < 0$ for $\mu > 5 \times 10^8$ GeV
Results of my analysis:

Left: the running $\overline{\text{MS}}$ couplings. Line thicknesses represent input parameter uncertainties. The green band corresponds to Higgs masses in the range $[124-127]$ GeV. Right: the running $\overline{\text{MS}}$ masses. The shadowed regions show parameter uncertainties, mainly due to the uncertainty in α_s, for a Higgs mass of 124 GeV, higher bands, and for 127 GeV, lower bands.
Non-zero dimensional $\overline{\text{MS}}$ running parameters: m, $v = \sqrt{6/\lambda} m$ and $G_F = 1/(\sqrt{2} v^2)$. Error bands include SM parameter uncertainties and a Higgs mass range 125.5 ± 1.5 GeV which essentially determines the widths of the bands.

- perturbation expansion works up to the Planck scale!
 no Landau pole or other singularities

- Higgs coupling decreases up to the zero of β_λ at $\mu_\lambda \sim 3.5 \times 10^{17}$ GeV, where it is small but still positive and then increases up to $\mu = M_{\text{Pl}}$
What rules the β-functions:

Naively:

- $U(1)_Y$ screening (IR free), $SU(2)_L$, $SU(3)_c$ antiscreening (UV free) [asymptotic freedom (AF)]

- Right – as expected

- Yukawa and Higgs: screening (IR free, like QED)

- Wrong!!! – transmutation from IR free to AF

At the Z boson mass scale: $g_1 \approx 0.350$, $g_2 \approx 0.653$, $g_3 \approx 1.220$, $y_t \approx 0.935$ and $\lambda \approx 0.796$

Leading (one-loop) β-functions at $\mu = M_Z$:
gauge couplings:

\[
\beta_1 = \frac{41}{6} g_1^3 c \simeq 0.00185; \quad \beta_2 = -\frac{19}{6} g_2^2 c \simeq -0.00558; \quad \beta_3 = -7 g_3^3 c \simeq -0.08045,
\]

with \(c = \frac{1}{16\pi^2} \)

top Yukawa coupling:

\[
\beta_{yt} = \left(\frac{9}{2} y_t^3 - \frac{17}{12} g_1^2 y_t - \frac{9}{4} g_2^2 y_t - 8 g_3^2 y_t \right) c \\
\approx 0.02328 - 0.00103 - 0.00568 - 0.07046 \\
\approx -0.05389
\]

not only depends on \(y_t \), but also on mixed terms with the gauge couplings \(g', g \) and \(g_3 \) which have a negative sign.

In fact the QCD correction is the leading contribution and determines the behavior.
Notice the critical balance between the dominant strong and the top Yukawa couplings: QCD dominance requires $g_3 > \frac{3}{4} y_t$ in the gaugeless limit.

- the Higgs self-coupling

\[
\beta_\lambda = (4 \lambda^2 - 3 g_1^2 \lambda - 9 \lambda g_2^2 + 12 y_t^2 \lambda + \frac{9}{4} g_1^4 + \frac{9}{2} g_1^2 g_2^2 + \frac{27}{4} g_2^4 - 36 y_t^4) c \\
\approx 0.01606 - 0.00185 - 0.01935 + 0.05287 + 0.00021 + 0.00149 + 0.00777 - 0.17407 \\
\approx -0.11687
\]

dominated by y_t contribution and not by λ coupling itself. At leading order it is not subject to QCD corrections. Here, the y_t dominance condition reads $\lambda < \frac{3(\sqrt{5}-1)}{2} y_t^2$ in the gaugeless limit.
running top Yukawa QCD takes over: IR free \Rightarrow UV free

unning Higgs self-coupling top Yukawa takes over: IR free \Rightarrow UV free

Including all known RG coefficients (EW up incl 3–loop, QCD up incl 4–loop)

except from β_λ, which exhibits a zero at about $\mu_\lambda \sim 10^{17}$ GeV, all other β-functions do not exhibit a zero in the range from $\mu = M_Z$ to $\mu = M_{Pl}$.

so apart form the $U(1)_Y$ coupling g_1, which increases only moderately, all other couplings decrease and perturbation theory is in good condition.

at $\mu = M_{Pl}$ gauge couplings are all close to $g_i \sim 0.5$, while $y_t \sim 0.35$ and $\sqrt{\lambda} \sim 0.36$.

effective masses moderately increase (largest for m_Z by factor 2.8): scale like $m(\kappa)/\kappa$ as $\kappa = \mu'/\mu \to \infty$,
i.e. mass effect get irrelevant as expected at high energies.
Comparison of results at M_{Pl}:

<table>
<thead>
<tr>
<th></th>
<th>my findings</th>
<th>Degrassi et al</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_1(M_{\text{Pl}})$</td>
<td>0.4561</td>
<td>0.4777</td>
</tr>
<tr>
<td>$g_2(M_{\text{Pl}})$</td>
<td>0.5084</td>
<td>0.5057</td>
</tr>
<tr>
<td>$g_3(M_{\text{Pl}})$</td>
<td>0.4919 ± 0.0046</td>
<td>0.4873</td>
</tr>
<tr>
<td>$y_f(M_{\text{Pl}})$</td>
<td>0.3551 ± 0.0037</td>
<td>0.3823</td>
</tr>
<tr>
<td>$\sqrt{\lambda}(M_{\text{Pl}})$</td>
<td>0.2993 ÷ 0.4060</td>
<td>i 0.1131</td>
</tr>
<tr>
<td>$\lambda(M_{\text{Pl}})$</td>
<td>0.0896 ÷ 0.1648</td>
<td>−0.0128</td>
</tr>
</tbody>
</table>

Most groups find tachyonic Higgs above $\mu \sim 10^9$ GeV!

Note: $\lambda = 0$ is an essential singularity and the theory cannot be extended beyond a possible zero of λ: remind $v = \sqrt{6m^2/\lambda}$!!! i.e. $v(\lambda) \to \infty$ as $\lambda \to 0$

besides the Higgs mass $m_H = \sqrt{2}m$ all masses $m_i \propto g_i v \to \infty$ different cosmology etc.
The issue of quadratic divergences in the SM

Hamada, Kawai, Oda 2012: coefficient of quadratic divergence has a zero not far below the Planck scale.

\[\delta m_H^2 = \frac{\Lambda^2}{16\pi^2} C_1 \]

Veltman 1978 modulo small lighter fermion contributions, one-loop coefficient function \(C_1 \) is given by

\[C_1 = \frac{6}{v^2}(M_H^2 + M_Z^2 + 2M_W^2 - 4M_t^2) = 2\lambda + \frac{3}{2}g'^2 + \frac{9}{2}g^2 - 12y_t^2 \]

Key point:

\(C_1 \) is universal and depends on dimensionless gauge, Yukawa and Higgs self-coupling only, the RGs of which are unambiguous, similarly for the two-loop coefficient \(C_2 \) (where however results differ by different groups [non-universal?]). The correction is numerically small, fortunately.
Now the SM for the given parameters makes a prediction for the bare mass parameter in the Higgs potential:

The EW phase transition in the SM. Left: the zero in C_1 and C_2 for $M_H = 125.5 \pm 1.5$ GeV. Right: shown is $X = \text{sign}(m_{\text{bare}}^2) \times \log_{10}(|m_{\text{bare}}^2|)$, which represents $m_{\text{bare}}^2 = \text{sign}(m_{\text{bare}}^2) \times 10^X$.
in the broken phase $m_{\text{bare}}^2 = \frac{1}{2} m_H^2$, which is calculable!

- the coefficient $C_n(\mu)$ exhibits a zero, for $M_H = 125 \text{ GeV}$ at about $\mu_0 \sim 7 \times 10^{16}$, not far below $\mu = M_{\text{Planck}}$

- at the zero of the coefficient function the counterterm $\delta m^2 = m_{\text{bare}}^2 - m^2 = 0$ (m the $\overline{\text{MS}}$ mass) vanishes and the bare mass changes sign

- this represents a phase transition which triggers the Higgs mechanism and seems to play an important role for cosmic inflation

- at the transition point μ_0 we have $v_{\text{bare}} = v(\mu_0^2)$, where $v(\mu^2)$ is the $\overline{\text{MS}}$ renormalized VEV

- the jump in vacuum density, thus agrees with the renormalized one: $-\Delta \rho_{\text{vac}} = \frac{\lambda(\mu_0^2)}{24} v^4(\mu_0^2)$, and thus is $O(v^4)$ and not $O(M_{\text{Planck}}^4)$.
In any case at the zero of the coefficient function there is a phase transition, which corresponds to a restoration of the symmetry. Such transition would take place at a scale $\mu \sim 10^{16}$ to 10^{18} one to three orders of magnitude below the Planck scale, at cosmic times $\sim 0.23 \times 10^{-38}$ to 10^{-42} sec and could have triggered inflation. Note that at the zero of β_{λ} at about $\mu_{\lambda} \sim 3.5 \times 10^{17} > \mu_0$ the Higgs self-coupling λ although rather small is still positive and then starts slowly increasing up to M_{Planck}.

Comment on finite temperature effects:

- finite temperature effective potential $V(\phi, T)$:

 $T = 0$: $V(\phi, 0) = -\frac{\mu^2}{2} \phi^2 + \frac{\lambda}{24} \phi^4$

 $T \neq 0$: $V(\phi, T) = \frac{1}{2} \left(g_T T^2 - \mu^2 \right) \phi^2 + \frac{\lambda}{24} \phi^4 + \cdots$

Usual assumption: Higgs is in the broken phase $\mu^2 > 0$
EW phase transition is taking place when the universe is cooling down below the critical temperature $T_c = \sqrt{\mu^2/g_T}$.

My scenario: above the PT μ_0 Higgs is in symmetric phase $-\mu^2 \rightarrow m^2 = m_H^2 + \delta m_H^2$

Is the phase transition triggered by the δm_H^2 or by the $g_T T^2$ term? Which term is larger in the early universe? Note, before the bare mass is negative no PT can take place.

I find $m^2(\mu = M_{Pl}) \simeq 1.27 \times 10^{-3} M_{Pl}^2$ such that $T(\mu = \mu_0) \simeq 8.12 \times 10^{29} \, ^\circ K$ and $T(\mu = m(M_{Pl})) \simeq 5.04 \times 10^{30} \, ^\circ K$

Note $T_{Pl} \simeq 1.42 \times 10^{32} \, ^\circ K$ (Temperature of the Big Bang)

g_T at M_{Pl} in SM:

$$g_T = \frac{1}{4v^2} \left(2m_W^2 + m_Z^2 + 2m_t^2 + \frac{1}{2} m_H^2 \right) = \frac{1}{16} \left[3 g^2 + g'\, g' + 4 y_t^2 + \frac{2}{3} \lambda \right] \approx 0.0983 \sim 0.1$$

- the dramatic jump in m_{bare}^2 at μ_0 in any case drags the Higgs into the broken phase not far below μ_0
Effect of finite temperature on the phase transition
Remark on the impact on inflation

Guth, Starobinsky, Linde, Albrecht et al, Mukhanov, ...

- the “inflation term” comes in via the SM energy-momentum tensor
- adds to the r.h.s of the Friedmann equation ($\dot{X} = \text{time derivative of } X$)

$$\ell^2 \left(V(\phi) + \frac{1}{2} \dot{\phi}^2 \right)$$

$\ell^2 = 8\pi G/3$, $M_{\text{Pl}} = (G)^{-1/2}$ is the Planck mass, G Newton’s gravitational constant

- Inflation requires an exponential growth $a(t) \propto e^{Ht}$
 of Friedman-Robertson-Walker radius $a(t)$ of the universe

$H(t) = \dot{a}/a(t)$ the Hubble constant at cosmic time t
Higgs contribution to energy momentum tensor \(\Rightarrow\) contribution to energy density and pressure

\[
\rho_\phi = \frac{1}{2} \dot{\phi}^2 + V(\phi) ; \quad p_\phi = \frac{1}{2} \dot{\phi}^2 - V(\phi) ; \quad w = p/\rho \quad \text{equation of state}
\]

second Friedman equation

\[
\frac{\ddot{a}}{a} = -\frac{\ell^2}{2} (\rho + 3p)
\]

condition for growth \(\ddot{a} > 0\)

requires \(p < -\rho/3\) and hence

\[
\frac{1}{2} \dot{\phi}^2 < V(\phi)
\]

first Friedman equation reads

\[
\frac{\dot{a^2}}{a^2} = \ell^2 \rho - k/a^2 \sim \ell^2 \rho \quad \text{if } a(t) \text{ huge}
\]
may then be written as

$$H^2 = \ell^2 \left[V(\phi) + \frac{1}{2} \dot{\phi}^2 \right] = \ell^2 \rho$$

field equation

$$\ddot{\phi} + 3H \dot{\phi} = -V'(\phi)$$

kinetic term $\dot{\phi}^2$: controlled by $\dot{H} = -\frac{3}{2} \ell^2 \dot{\phi}^2 = \ell^2 \rho (q - 1)$

i.e. by observationally controlled deceleration parameter $q(t) = -\ddot{a}/\dot{a}^2$.

“flatteningization” by inflation: curvature term $k/a^2(t) \sim k \exp(-2Ht) \to 0$ ($k = 0, \pm 1$ the normalized curvature)

\Rightarrow universe looks effectively flat ($k = 0$) for any initial k

Inflation looks to be universal for quasi-static fields $\dot{\phi} \sim 0$ and $V(\phi)$ large positive

$\Rightarrow a(t) \propto \exp(Ht)$ with $H \approx \ell \sqrt{V(\phi)}$
This is precisely what the transition to the symmetric phase suggests:

Now, as for the Higgs potential λ remains positive and the bare mass square also has been positive (symmetric phase) before it flipped to negative values at later times, this definitely supports the inflation condition. As both λ and m^2 for the first time are numerically fairly well known quantitative conclusions on the inflation patterns should be possible solely on the basis of SM properties.

The leading behavior is characterized by a free massive scalar field with potential

$$V = \frac{m^2}{2} \phi^2$$

$$\Rightarrow$$

$$H^2 = \left(\frac{\ddot{a}}{a}\right)^2 = \frac{m^2}{6} \phi^2$$

and

$$\ddot{\phi} + 3H(\phi) = m^2 \phi$$

\Rightarrow harmonic oscillator with friction

Clearly supported by observation: Planck 2013 results
Fig. 14. The SMICA CMB map (with 3% of the sky replaced by a constrained Gaussian realization).
The cosmological constant is characterized by the equation of state $w = p/\rho = -1$, in my scenario a prediction of the SM before the PT ($\mu > \mu_0$) which triggers inflation, and which is stopped by the PT ($\mu = \mu_0$); indeed Planck (2013) finds $w = -1.13^{+0.13}_{-0.10}$.

Scalar density fluctuations: $\delta \rho = \frac{dV}{d\phi} \delta \phi$

spectrum $A_s^2(k) = \left. \frac{V^3}{M_{Pl}^6 (V')^2} \right|_{k = aH}$ to be evaluated at the moment when the physical scale of the perturbation $\lambda = a/k$ is equal to the Hubble radius H^{-1}.

Observations are parametrized by a power spectrum $A_s^2(k) \propto k^{n_s-1}$; $n_s = 1 - 6\epsilon + 2\eta$

slow-roll for a long enough time requires $\epsilon, \eta \ll 1$

$\epsilon \equiv \frac{M_{Pl}^2}{8\pi} \frac{1}{2} \left(\frac{V'}{V} \right)^2 \sim 6 \times 10^{-4}$ and $\eta \equiv \frac{M_{Pl}^2}{8\pi} \frac{V''}{V} \sim 9 \times 10^{-4}$
I find $n_s \approx 0.998$, confronts Planck mission result $n_s = 0.9603 \pm 0.0073$ ballpark OK.

Planck data are consistent with Gaussian primordial fluctuations. There is no evidence for primordial Non Gaussian (NG) fluctuations in shapes (local, equilateral and orthogonal).

shape non-linearity parameters:

- $f_{\text{loc}} = 2.7 \pm 5.8$
- $f_{\text{eq}} = -42 \pm 75$
- $f_{\text{orth}} = -25 \pm 39$ (68% CL statistical)

- The scenario suggested by the present analysis is a Gaussian potential with small anharmonic perturbations, since m_{bare}^2 is predicted to be large while λ_{bare} remains small. Also the bare kinetic term is logarithmically “unrenormalized” only.

- Numbers depend sensibly on what $\lambda(M_H)$ and $y_t(M_t)$ are (ILC!)
Conclusion

- Higgs not just the Higgs: its mass $M_H = 125.5 \pm 1.5 \text{ GeV}$ has a very peculiar value!!

- ATLAS and CMS results may "revolution" particle physics in an unexpected way, namely showing that the SM has higher self-consistency (conspiracy) than expected and previous arguments for the existence of new physics may turn out not to be compelling

- SM as a low energy effective theory of some cutoff system at M_{Pl} consolidated; crucial point $M_{Pl} >>>> ...$ from what we can see!

- This picture outlined should be valid in the renormalizable effective field theory regime below about 10^{17} GeV. Going to higher energies details of the cutoff system are expected to come into play, effectively in form of dimension 5 and/or dimension 6 operators as leading corrections. These corrections are expected
to get relevant only closer to the Planck scale.

- Last but not least in Higgs phase:

There is no hierarchy problem in the SM!

It is true that in the relation

$$m_{H\text{ bare}}^2 = m_{H\text{ ren}}^2 + \delta m_H^2$$

both $m_{H\text{ bare}}^2$ and δm_H^2 are many many orders of magnitude larger than $m_{H\text{ ren}}^2$. However, in the broken phase $m_{H\text{ ren}}^2 \propto v^2(\mu_0^2)$ is $O(v^2)$ not $O(M_{Pl}^2)$, i.e. in the broken phase the Higgs is naturally light. That the Higgs mass likely is $O(M_{Pl})$ in the symmetric phase is what realistic inflation scenarios favor.

In the broken phase, characterized by the non-vanishing Higgs field vacuum expectation value (VEV) $v(\mu^2)$, all the masses are determined by the well known
mass-coupling relations

\[
\begin{align*}
 m_W^2(\mu^2) &= \frac{1}{4} g^2(\mu^2) v^2(\mu^2) ; \\
 m_Z^2(\mu^2) &= \frac{1}{4} \left(g^2(\mu^2) + g'^2(\mu^2)\right) v^2(\mu^2) ; \\
 m_f^2(\mu^2) &= \frac{1}{2} y_f^2(\mu^2) v^2(\mu^2) ; \\
 m_H^2(\mu^2) &= \frac{1}{3} \lambda(\mu^2) v^2(\mu^2) .
\end{align*}
\]

According to these well known relations why the Higgs should be of order of \(\Lambda_{\text{Pl}}^2 \) while the others are small, of order \(v^2 \)? Higgs naturally in the ballpark of the other particles! No naturalness problem!

Put SM in symmetric phase on a lattice, below critical temperature low energy tail in spontaneously broken phase; at high energies symmetric phase recovered only if order parameter \(v \ll M_{\text{Pl}} \) ! Essence of SSB. \(\textbf{not } v \sim M_{\text{Pl}}! \)
Higgs potential of the SM a) in the symmetric ($\mu_s^2 > 0$) and b) in the broken phase ($\mu_b^2 < 0$). For $\lambda = 0.5$, $\mu_b = 0.1$ and $\mu_s = 1.0$.

Masses given by curvature of the potential at the ground state need not be correlated, and in fact are not. Note not only sign of μ^2 changes but also its value!
My main theses:

- There is no hierarchy problem of the SM
- A super symmetric or any other extension of the SM cannot be motivated by the (non-existing) hierarchy problem
- running of SM couplings is triggering Higgs mechanism at about 10^{17} GeV as the universe cools down, in the broken phase the Higgs is naturally as light as other SM particles which are generated by the Higgs mechanism
- in the early symmetric phase quadratically enhanced bare mass term in Higgs potential triggers inflation, if Higgs to be the inflaton this enhancement is mandatory. My view: inflation is an unavoidable prediction of the SM
- dark energy at inflation times is given by Higgs mass term in symmetric phase; latter lowered by large negative Higgs condensate contribution from EW phase transition (major fine tuning problem unsolved)
- The Higgs mechanism terminates inflation and triggers the *electroweak phase transition*; reheating likely proceeds via the four heavy decaying Higgses into fermion pairs (predominantly) just before the jump into the broken phase.

- Need to reconsider the early pre-Higgs epoch of cosmology (SM in symmetric phase very different from known physics in broken phase).

- Need to reconsider the issues related to EW phase transition and inflation.

- Can SM explain baryon asymmetry? What is dark matter? Why is the cosmological constant so small?

\[
\delta \rho_{\text{vac}} = \frac{\Lambda^4}{(16\pi^2)^2} X(\mu)
\]

Maybe \(X(\mu) = X_2(g'(\mu), g(\mu), g_3(\mu), y_t(\mu), \lambda(\mu)) \) is close to zero today? Then \(\rho_{\text{vac}} \) is determined by some scale other than \(\Lambda \)!

Examples, from condensed matter physics illustrating this possibility. Of course \(X(\mu) \) above the CMB temperature scale corresponding of about \(T_{\text{CMB}} \approx 3 \, \text{°K} \) today, should not have changed sign.
Concluding remarks

- Conspiracy between SM couplings the new challenge

- Very delicate on initial values as we run over 16 orders of magnitude from the EW 250 GeV scale up to the Planck scale!

- Running couplings likely have dramatic impact on cosmology! The existence of the world in question?

- ILC will dramatically improve on Higgs self-coupling \(\lambda \) (Higgs factory) as well as on top Yukawa \(y_t \) (\(tt \bar{t} \) factory)
for running α_{em} and $\sin^2 \Theta_{eff}$ \Leftrightarrow g_1 and g_2 need more low energy information like what one could get from low energy hadron production facilities, in addition need improving QCD issues!

Precision determination of SM parameters more important than ever. Challenge for present and future high and low energy e^+e^- facilities!

🙏 the SM seems to be much better than its reputation!
key problems

dark energy, dark matter, baryon asymmetry

persist, but must be reanalyzed in the new scenario!

does vacuum stability and the Higgs transition point persist as my analysis suggests or do we still need new physics to “stabilize” the picture?

such scenario essentially rules out SUSY, GUTs etc; SUSY at least if used to kill quadratic divergences; no compactified extra dimensions; no little Higgs [non-renormalizable at low scales] etc.
new physic (cold dark matter etc.) still must exist; however, if new physics needed e.g. to help stabilize vacuum, should not deteriorate the gross features of the SM including MFV scenario.

expect singlet neutrino Majorana mass term to exist, not protected by any symmetry i.e. naturally very heavy i.e. provides seesaw mechanism implying very light standard neutrinos [actually essentially does not affect running couplings discussed before]
Keep in mind: the Higgs mass miraculously turns out to have a value as it was expected form vacuum stability. It looks like a tricky conspiracy with other couplings to reach this “purpose”. If it misses to stabilize the vacuum, why does it just miss it almost not?

Why not simple although it may well be more complicated?

Thanks you for your attention!
Backup slides
Left: the coefficient of the quadratic divergence term at \(\mu = M_{\text{Planck}} \) as a function of \(M_H \) at \(M_t = 173.5 \text{ GeV} \). Right: the same as a function of \(M_t \) at \(M_H = 125 \text{ GeV} \). In the shaded region the zero is above the Planck scale and thus unphysical in the LEESMS context.