/usr/share/doc/maxima-doc/html/intromax.html introduction /usr/share/doc/maxima-doc/html/maxima_toc.html full helptop
Text mode: unix> maxima interrupt a maxima calculation with <CTRL>-G terminate maxima with quit(); GUI: unix> xmaxima unix> wxmaxima Help: GUI ->Help descripe(string); ? string; /* note the space after "?" */A perfect way to restart maxima does not exist (see mailing list), use
reset(); kill(all);top
Terminate commands with ";" or "$" (quiet mode). command prompts: (%i1) (%i2) .. output labels: (%o1) (%o2) .. Previous result: % Former output, e.g. (%o5): %o5 Redo command, e.g. (%i5) : ''%i5; Operators: + - * / ^ ** ( ) ! !! Comparison: = # > < >= <= /* "#" is "not equal" */ Logical: and or not Text strings are written as "text".top
declare("$", alphabetic);Pre-defined constants:
%i %pi %e true false %gamma Euler's constant %phi (1 + sqrt(5))/2 inf real infinity minf real (-infinity) infinity complex infinityPre-defined functions:
sqrt log exp sin .. asin .. sinh .. asinh .. gamma beta zeta binomial factorial mod floor ..Reserved names:
integrate next from diff in at limit sum for and elseif then else do or if unless product while thru stepManage user-defined variables:
values list of all user defined variables remvalue(var); delete the value of var remvalue(all); delete the values of all variablestop
Assignment: : (without "="!) :: ?? := defines a function ::= defines a macro Unassign names: kill(name1, name2, ..); kill(all); xmaxima: ->File ->Restart wxMaxima: ->Maxima ->Restart maximatop
lst: [el1, el2, ...]; contruct list explicitly lst[2]; reference to element by index (starting from 1) cons(expr, alist); prepend expr to alist endcons(expr, alist); append expr to alist append(list1, list2, ..); merge lists makelist(expr, i, i1, i2); create list with control variable i makelist(expr, x, xlist); create list with x from another list listp(expr); true if expr is a list, else false length(alist); returns #elements map(fct, list); evaluate a function of one argument map(fct, list1, list2); evaluate a function of two argumentstop
'expr don't evalute ''expr do evaluate e.g. a: b+c; c + b b:5$ a; c + b ''a; c + 5 'b + c; c + bEvalutate variables, based on equations:
at(expr, var=ex); at(expr, [var1=ex1, var2=ex2, ..]); e.g. at(diff(sin(x), x), x=%pi); -1Evaluate with additional settings/flags:
ev(expr, arg1, arg2...); expr, arg1, arg2, ...; same in short args: numer float bfloat simpsum eval ...Many of the evalutation switches (e.g. numer, simpsum) are actually flags, which are false by default, but can be enabled for subsequent use.
float(expr); evaluate to floating point number expr, numer; return numerical result numer: true; numerical evaluation on (default: false) fpprec: digits; precision of big floats (default: 16) fpprintprec: digits; no. of printed digits bfloat(expr); evaluate to big float example: fpprec: 30; sin(%pi); => 0 sin(float(%pi)); => 1.2246063538223773E-16 sin(bfloat(%pi)); => 1.69568553207377992879174029388B-31Note: WxMaxima, with output format set to xml, diplays long numbers with a shortcut - compare the output of
bfloat(%pi), fpprec:1000;top
subst(..) syntactic, symbols and complete sub-expressions only ratsubst(..) similar, but employs some algebra at(..) evaluation, based on equations ev(..) evaluation, with equations, flags etc.subst(..) and ratsubst(..) in more detail:
subst(ex, var, expr); substitute ex for var in expr subst(var=ex, expr); same subst([var1=ex1, var2=ex2,..], expr); multiple substitutions ratsubst(ex, var, expr); substitute ex for var in expr subst(s, a+b, a+b+c); c + b + a ratsubst(s, a+b, a+b+c); s + c subst(1-cos(x)^2, sin(x)^2, sin(x)^4 - 5*sin(x)^2); 4 2 sin (x) - 5 (1 - cos (x)) ratsubst(1-cos(x)^2, sin(x)^2, sin(x)^4 - 5*sin(x)^2); 4 2 cos (x) + 3 cos (x) - 4top
func(x) := sin(x)/x; radius(x,y) := sqrt(x^2 + y^2);Alternative form:
define(f(x), expr); /* expr is always evaluated */ define(f(x,y), expr); /* etc */More complicated function definitions can be formulated with the block(..) construct.
factor(expr); factorise polynomials (over integers only) expand(expr); expand polynomials ratexpand(expr); same (more efficient algorithm) expandwrt(expr, x, ..); expand w.r.t. specified variables coeff(expr, x, n); coefficient of x^n in expr ratcoef(expr, x, n); same, but simplifies expr first divide(pol1, pol2); polynomial devision (with remainder) quotient(pol1, pol2); quotient of polynomial devision remainder(pol1, pol2); remainder of polynomial division realroots(pol, tol); numerical approx. to all real roots realroots(pol); tol = rootsepsilon (default: 1e-7) allroots(pol); numerical approx. to all complex rootstop
ratsimp(expr); put on common denominator, cancel factors, expand numerator and denominator fullratsimp(expr); repeated application of `ratsimp' factor(expr); same as `ratsimp', but returns numerator and denominator in factored form expand(expr); expand numerator and denominator, split numerator (no common denominator) ratexpand(expr); put on common denominator, cancel factors, expand numerator and denominator, split numerator ratdenomdivide: false; don't split numerator (same as ratsimp?) num(expr); numerator of rational expression denom(expr); denominator facsum(expr, var, ..) expand w.r.t. specified variables facsum_combine: false; split numerator partfrac(expr, var); partial fraction decomposition examples: ratsimp(a/b + c/d); a d + b c --------- b d (x-1)/(x+1)^2 - 1/(x-1); x - 1 1 -------- - ----- 2 x - 1 (x + 1) ratexpand(%); 4 x - --------------- 3 2 x + x - x - 1 factor(%); 4 x - ---------------- 2 (x - 1) (x + 1) r: (u+v)^2*u/((u^2-v^2)*v); 2 u (v + u) ----------- 2 2 v (u - v ) ratsimp(r); u v + u - -------- 2 v - u v factor(r); u (v + u) - --------- v (v - u) ratexpand(r); 2 u u - -------- - ----- 2 v - u v - u v s: a*b/(c*d+c*e) + f*b/(c*d+c*e); b f a b --------- + --------- c e + c d c e + c d factor(s); b (f + a) --------- c (e + d) ratsimp(s); b f + a b --------- c e + c dNotes:
ratsimp(expr); and ratexpand(expr), ratdenomdivide: false; ratsimp(expr), factor; and factor(expr);but factor(expr) does not understand algebraic!
Summary: simplify rational functions with ratsimp(expr), possibly combined with factor and/or algebraic. Use ratexpand(expr), possibly with algebraic, if you prefer to split the numerator.
In the complex case, try e.g.
gfactor(expr); factorise over integers and %i partfrac(gfactor(expr)), var); partial fractions with complex rootstop
rootscontract(expr); products of roots -> roots of products ratsimp(expr), algebraic; rationalise denominators radcan(expr); canonical form, involving roots, logs, radcan(expr), algebraic; and exponentialsexamples:
ex: 1/(sqrt(a)+sqrt(b)); 1 ----------------- sqrt(b) + sqrt(a) ratsimp(ex), algebraic; sqrt(b) - sqrt(a) ----------------- b - a sqrt(x^2); abs(x) sqrt(x^2), radexpand:all; xIn some cases, sqrtdenest can disentangle nested square roots:
load(sqdnst); sqrtdenest(expr); e.g. sqrt(sqrt(7)+ 4); sqrt(sqrt(7) + 4) sqrtdenest(%); sqrt(7) 1 ------- + ------- sqrt(2) sqrt(2) factor(%); sqrt(7) + 1 ----------- sqrt(2)top
logexpand:all; enables automatic expansion of products logcontract(expr); contracts sums of logs to logs of products and _integer_ multiples of logs to logs of powers radcan(expr); canonical form, involving roots, logs, radcan(expr), algebraic; and exponentialsexamples:
log(a^b); log(a) b log(a*b), logexpand:all; log(b) + log(a) logcontract(2*log(a) + 3*log(b)); 2 3 log(a b )top
trigsimp(expr); use sin(x)^2 + cos(x)^2 = 1 etc trigexpand(expr); use addition theorems etc trigreduce(expr); powers -> multiple arguments products -> sums trigrat(expr); simplify rational expressions of trigonometric functions as well as linear arguments involving %pi/n halfangles:true; replace half angles by roots exponentialize(expr); trig/hyperb -> exponentials demoivre(expr); complex exponentials -> trig (not hyperb) logarc(expr); arc trig/hyperb -> logarithmstrigexpand is a flag as well (and an evflag), but the other trigX aren't!
trigsimp(..) in combination with roots is tricky:
trigsimp(sqrt(sinh(x)^2 + 1)); cosh(x) trigsimp(sqrt(cosh(x)^2 - 1)); sqrt(cosh(x) - 1) sqrt(cosh(x) + 1)instead of the expected abs(sinh(x)). It does not work for sin() and cos(x) either. Is this caused by abs(..)?
There is no command to convert real exponentials to hyperbolic functions - use ratsubst(..) instead.
Examples:
sin(x/2), halfangles; sqrt(1 - cos(x)) ---------------- sqrt(2)?HOW TO:
sin(x) + cos(x) = sqrt(2) * sin(x + %pi/4) try exponentialize(...)?HOW TO
ex1: cos(x) + cos(y); ex2: 2 * cos((x+y)/2) * cos((x-y)/2); ex2 -> ex1: trigreduce(ex2), ratsimp; or trigrat(ex2); ex1 -> ex2 ??logarc examples:
asinh(x), logarc; 2 log(sqrt(x + 1) + x) acosh(x), logarc; sqrt(x + 1) sqrt(x - 1) 2 log(----------- + -----------) sqrt(2) sqrt(2) %, logcontract, expand, rootscontract; 2 log(sqrt(x - 1) + x)top
minfactorial(expr) combines factorials with integer offset factcomb(expr) combines factorials with factors gamma_expand: true expand gamma(z+n) and gamma(z-n) beta_expand: true expand beta for arguments z+n and z-n makegamma(expr) transforms binomial, factorial, and beta functions into gamma functionsFor products involving these functions with integer offsets, try makegamma(..) in combination with gamma_expand: true
rectform(z) a + %i*b conjugate(z) realpart(z) imagpart(z) polarform(z) |z|*e^(%i*phi) cabs(z) |z| carg(z) polar angle phi in (-%pi, %pi]top
factor(n) basic method ifactors(n) more efficient algorithm ifactor_verbose: true show detailstop
limit(f(x), x, a); limit(f(x), x, a, dir); direction dir = plus, minustop
diff(expr, x); diff(expr, x, n); /* n-th derivative */ diff(expr, x, 1, y, 1); /* mixed partial derivative */Convert the derivative to a function with define(..):
f(x) := sin(x); /* works */ diff(f(x), x); cos(x) /* ok */ g(x) := diff(f(x), x); /* doesn't work */ define(g(x), diff(f(x), x)); g(x) := cos(x) /* works */Compute the derivative at a specific value with at(..):
at(diff((x-a)^2, x, 2), x=a); 2top
integrate(f(x), x); indefinite integral integrate(f(x), x, a, b); definite integral defint(f(x), x, a, b); same ldefint(f(x), x, a, b); same, but taking limits at the boundariesExamples:
assume(a>0)$ declare(a, noninteger)$ facts(a); [a > 0, kind(a, noninteger)] integrate(x^a * exp(-x), x, 0, inf); gamma(a + 1) kill(all)$ facts(); []
integrate(1/(a - cos(x)), x, 0, %pi); Is (a - 1) (a + 1) positive, negative, or zero? pos; 2 Is sqrt(a - 1) - a positive or negative? neg; 2 Is sqrt(a - 1) - a + 1 positive, negative, or zero? pos; ! 2 ! Is !sqrt(a - 1) + a! - 1 positive, negative, or zero? pos; 2 2 %pi sqrt(a - 1) - 2 %pi a - ---------------------------- 2 2 2 (a sqrt(a - 1) - a + 1) ratsimp(%), algebraic; %pi ------------ 2 sqrt(a - 1)top
sum(expr, n, n1, n2); ev(sum(...), simpsum); sum and simplify sum(...), simpsum; same in short simpsum: true; enable summationsExample:
sum(k^2, k, 1, n); n ==== \ 2 > k / ==== k = 1 %, simpsum; 3 2 2 n + 3 n + n --------------- 6The same is achieved with
sum(k^2, k, 1, n), simpsum; or simpsum: true; sum(k^2, k, 1, n);Within a function definition, the ev(..) command is used to force the summation. The following example computes the partial sum of the harmonic series and returns the result as a floating point number:
Harm(n) := ev(sum(1/k, k, 1, n), simpsum, numer);In the same way, products are defined with product(..) and evaluated (symbolically) with simpproduct:
product(expr, n, n1, n2); ev(product(expr, n, n1, n2), simpproduct);top
powerseries(expr, var, point); symbolic, possibly infinite taylor(expr, var, point, order); truncated at given order niceindices(expr); rewrite symbolic sumsExpansion in several variables:
taylor(expr, [x_1, x_2], a, n); around x_i = a taylor(expr, [x_1, x_2], [a_1, a_2], n); around x_i = a_iExtract coefficients with coeff(..), e.g.
ser: taylor(exp(x), x, 0, 10); coeff(ser, x, 3); 1 - 6 makelist(coeff(ser, x, i), i, 0, 5); 1 1 1 1 [1, 1, -, -, --, ---] 2 6 24 120top
solve(eqn, var); solve([eqn1, eqn2, ..], [var1, var2, ..]);It returns a list of solutions resp. solution vectors.
sol: solve(x^2 + p*x + q, x); sqrt(p - 4 q) + p sqrt(p - 4 q) - p [x = - ------------------, x = ------------------] 2 2 x1: x, sol[1]; sqrt(p - 4 q) + p - ------------------ 2 x2: x, sol[2]; sqrt(p - 4 q) - p - ------------------ 2 eqn1: x + y = 4; y + x = 4 eqn2: x - y = 2; x - y = 2 sol: solve([eqn1, eqn2], [x,y]); [[x = 3, y = 1]] x, sol; 3 y, sol; 1 Check: map(is, ev([eqn1, eqn2], sol)); [true, true]Maybe ev(..) needs more flags (e.g. ratexpand).
Check multiple solutions (equation is formulated as f(x) = 0):
f(x):= x^2 + 2*b*x + c; 2 f(x) := x + 2 b x + c sol: solve(f(x), x); 2 2 [x = - sqrt(b - c) - b, x = sqrt(b - c) - b] map(f, map(rhs, sol)), expand; [0, 0]?HOW TO:
solve(sin(x) + cos(x) = 1/2, x); eqn: sin(x) + cos(x) = 1/2; solve(eqn, x); no success eqnx: exponentialize(eqn); sol: solve(eqnx, x); solution in terms of complex logs ratsimp(sol); %, numer; rectform(sol); imaginary parts are obsolete ratsimp(%); nicer formula %, numer;?HOW TO:
solve(s + sqrt(1-s^2) = 1/2, s); solveradcan: true; doesn't help here (solve calls radcan) eq1: s + r = 1/2; aux variable r = sqrt(1 - s^2) > 0 eq2: r^2 = 1 - s^2; solve([eq1, eq2], [s, r]); sqrt(7) - 1 sqrt(7) + 1 [[s = - -----------, r = -----------], 4 4 sqrt(7) + 1 sqrt(7) - 1 [s = -----------, r = - -----------]] 4 4Solution is s = (1 - sqrt(7))/4 .
?HOW TO:
solve([sqrt(x) + y = 0, sqrt(x) = 1], [x, y]); [] eliminate([sqrt(x) + y = 0, sqrt(x) = 1], [x]); [1] ??? BUG ??? eliminate([sqrt(x) + y = 0, sqrt(x) = 1], [y]); [ sqrt(x) - 1 ] okNote that eliminate() uses resultant(), which is supposed to work with polynomials.
eliminate([eqn1, eqn2, ..], [var1, var2, ..]);
eqn: sin(x) + cos(x) = 1/2; to_poly_solve(eqn, x); /* auto-loads the package */ %union{...} or load(to_poly_solve); /* manual load */ sol: %solve(eqn, x); /* alias for to_poly_solve */ %union{...} first(sol); /* extract solutions */ second(sol);The set of solutions is returned as a %union. Extract single solutions (explicit equations) with commands like first, second, .., tenth, last, rest.
find_root(expr, x, a, b)For polynomials: see realroots(pol), allroots(pol).
ode2(eqn, y, x); E.g. eqn of 2nd order: eqn: 'diff(x,t,2) + r*'diff(x,t)^2 = 0; general solution, with constants of integration %k1, %k2: sol: ode2(eqn, x, t); log(r t + %k1 r) x = ---------------- + %k2 r impose initial conditions: ic2(sol, t=0, x=x0, 'diff(x,t)=v0), logcontract, ratexpand; log(r t v0 + 1) x = x0 + --------------- r convert solution equation to a function: define(x(t), rhs(%));[TO DO: for the same deqn with exponent 2 -> 3, ic2() fails to solve for the initial conditions. This looks like a problem with solve...]
eqn: 'diff(f(x), x) = 2*f(x); /* linear ODE of 1st order */ sol: desolve(eqn, f(x)); 2 x f(x) = f(0) %e[Note the different format of derivatives in the equation.]
eqn: 'diff(f(x), x) = 2*f(x); atvalue(f(x), x=0, k); /* initial value at x=0 */ sol: desolve(eqn, f(x)); /* solution as an equation */ 2 x f(x) = k %e define(f(x), rhs(%)); /* solution function */ 2 x f(x) := k %eAn example of second order:
eqn: 'diff(f(t), t, 2) + r*'diff(f(t), t) + f(t) = sin(omega*t); atvalue(f(t), t=0, 1); atvalue('diff(f(t), t), t=0, 0); desolve(eqn, f(t)); /* omega nonzero, -2 < r < 2 */ define(f(t), rhs(%)); plot2d(ev(f(t), omega=1.1, r=0.1), [t, 0, 100]);A linear system is solved with desolve as follows:
eqn1: 'diff(f(x), x) = c*f(x) - g(x); eqn2: 'diff(g(x), x) = c*g(x) + f(x); atvalue(f(x), x=0, 1); atvalue(g(x), x=0, 0); sol: desolve([eqn1, eqn2], [f(x), g(x)]); define(f(x), rhs(sol[1])); define(g(x), rhs(sol[2])); c: 0.1; plot2d([parametric, f(x), g(x), [x, 0, 10]]);
desolve requires that the inverse Laplace transform (ilt) is applied to a rational function with a denominator of first or second order.
gamma(z) # Euler's gamma function log_gamma(z) psi(z) # log. derivative %gamma # Euler's constant (0.5772..) gamma_expand: true # simplify gamma(z+n) and gamma(z-n) beta(x,y) # Euler's beta function beta_expand: true # simplify beta(x+n,y) etc
zeta(n) # Riemann's zeta functionIt is implemented numerically.
erf(z) erfc(z)top
x: [x1, x2, x3]; y: [y1, y2, y3]; s * x + t * y; x . y; /* scalar product */ load("vect"); express(x ~ y); /* 3d cross product */Matrix construction:
A: matrix([a, b, c], [d, e, f], [g, h, i]); /* (3x3) matrix */ u: matrix([x, y, z]); /* row matrix */ v: transpose([r, s, t]); /* column matrix */ ident(n); /* (nxn) unit matrix */ diagmatrix(n,x); /* (nxn) diagonal matrix diag(x,..,x) */ zeromatrix(m,n); /* (mxn) zero matrix */ ematrix(m,n,x,i,j); /* (mxn) matrix with M[i,j]=x, 0 elsewhere */ addrow(M, row, ..); /* add row(s) (lists or vectors) */ addcol(M, col, ..); /* add column(s) (lists or vectors) */ B: A; /* matrix assignment (new name/pointer) */ B: copymatrix(A); /* copy matrix (new storage) */Reference to matrix elements etc:
u[1,2]; /* second element of u */ v[2,1]; /* second element of v */ A[2,3]; or A[2][3]; /* (2,3) element */ A[2]; /* second row of A */ row(A,i); /* i'th row of A */ col(A,i); /* i'th column of A */Element by element operations:
A + B; A - B; A * B; A / B; A ^ s; s ^ A;Matrix operations:
A . B; /* matrix multiplication */ A ^^ s; /* matrix exponentiation (including inverse) */ transpose(A); determinant(A); invert(A); mat_trace(A); /* trace of square matrix */ eigenvalues(A); or eivals(A); eigenvectors(A); or eivects(A);top
assume(pred); predicate `pred' e.g. a > 0, equal(b,3), notequal(c,0) is(expr); check whether expr is true, based on assumptions forget(pred); remove `pred' from assume database features list of mathematical properties declare(var, prop); remove(var, prop); facts(item); list properties associated with item facts(); list all properties domain:real default domain:complexExamples:
facts(a); list of properties involving a forget(facts()); remove all properties (but not the features?) forget(facts(a)); remove all properties (not features?) involving akill(all) clears the facts database (among other things).
plot2d(expr, range); /* one curve */ plot2d([expr1, expr2], range); /* two curves */ plot2d([parametric, expr1, expr2, range]); /* parametric */ plot2d([discrete, xlist, ylist]); /* polygon */ plot2d([discrete, xlist, ylist], [style, points]); /* points */ examples: plot2d(sin(x), [x, 0, 10]); plot2d(tan(x), [x, 0, 10], [y, -2, 2]); /* truncate vertically */ plot2d([8*sin(x), exp(x)], [x, -2, 2]); plot2d([parametric, t*cos(t), t*sin(t), [t, 0, 10]]); plot2d(sin(x), [x, 0, 10], [gnuplot_term, ps], [gnuplot_out_file, "filename"]); /* write PS file */ plot3d(expr, range1, range2); /* 3D mesh plot */ example: plot3d(sin(x)^2 * sin(y)^2, [x, -2, 2], [y, -2, 2]);
More details in an appendix and in section 12 of the Maxima manual.
print("text"); print(expr1, expr2, ..); disp(expr1, expr2, ..); display(expr1, expr2, ..); z: read("what is z?"); /* terminate reply with ; */Read/write data (in matrix or list form) from/to a file (space-separated numbers):
load("numericalio"); read_matrix("filename"); write_data(matrix, "filename"); read_nested_list("filename"); write_data(list, "filename");File search and display:
file_search("filename"); check for the existence of a file, using file_search_maxima etc as search paths file_search("filename",["path/"]); use specified path (relative or absolute path) file_search_maxima search path list, for load etc file_search_usage search path list, e.g. for printfile printfile("filename"); display contents of file e.g. prepend a directory as follows: file_search_maxima: cons("/home/me/work/", file_search_maxima);Notes:
for var: first step incr thru limit do body for var: first step incr while cond do body for var: first step incr unless cond do body if cond then body if cond then body1 else body2 return(expr); /* abnormal termination of the "for" loop */step 1 can be omitted.
x: 1.; for n: 1 thru 10 do (x0: x, x: .5*(x + 10./x), if x = x0 then return(x));In this example, the control variable is obsolete and can be omitted:
x: 1.; do (x0: x, x: .5*(x + 10./x), if x = x0 then return(x));top
/* .. */ comments in scriptRun script in maxima:
batch("filename"); run maxima commands from file batchload("filename"); same, in quiet mode load("filename"); run maxima and lisp code from fileRun script from the command line:
unix> maxima -b filenametop
There is a config option to display greek letters by name (without %):
->Edit ->Configure ->Worksheet [x] Change names of greek letters to greek lettersBeware: beta gamma zeta are pre-defined functions!
set_display('xml); nice format (default) set_display('ascii); multi-line mode, like maxima with display2d:true set_display('none); one-line mode, like maxima with display2d:falseMay be set via ->Maxima ->Change 2d display.
wxsubscripts: false true /* default */ all /* for multi-letter subscripts */which can also be changed in Configure ->Worksheet.
(Mis)use of array indices as subscripts (e.g. alpha[new]) is discouraged.
[x] Enter evaluates cells
In wxMaxima-0.8.5, %alpha etc are represented as greek letters by default (no need to configure).
It appears that wxMaxima has an additional mechanism to auto-load packages, in addition to setup_autoload(..) in maxima.
maxima_userdir directory for user startup files (Unix default: $HOME/.maxima)Startup files, see maxima(1):
maximarc maxima-init.lisp maxima-init.macThe latter can be used to configure auto-loading of modules, e.g.
setup_autoload("to_poly_solve.mac", to_poly_solve, %solve);top
display2d:falseConvert expression to TeX format:
tex(expr);Save command output and input to file:
with_stdout("filename", commands); writes output of commands to file file_output_append: true; switch to append mode stringout("filename", expr1, ..); write expressions in a form suitable for maxima inputSession transcript:
writefile("filename"); session transcript in console output format appendfile("filename"); same, but append to file closefile(); terminate session transcripttop
build_info(); run_testsuite(); run_testsuite(true); show bugs onlytop
provided e.g. with Maxima-5.15.0 + 5.17.1:
files:
topoly.lisp (engine)
topoly_solver.mac (wrapper).
They also work with Maxima-5.10.
load(topoly_solver); /home/b/maxima/5.15.0/topoly_solver.mac to_poly_solve(s + sqrt(1-s^2) = 1/2, s); sqrt(7) - 1 [[s = - -----------]] 4 to_poly_solve([sqrt(x) + y = 0, sqrt(x) = 1], [x, y]); [[x = 1, y = - 1]] to_poly_solve(sin(x) + cos(x) = 1/2, x); Nonalgebraic argument given to 'topoly'In Maxima-5.18.1, there is a new version (which does not work with Maxima-5.10?) - it solves the last example as well:
load(to_poly_solver); to_poly_solve(sin(x) + cos(x) = 1/2, x); %union{...}In Maxima-5.21.1, the to_poly_solver package is auto-loaded as needed.
plot2d(plot, options, ...) one plot item plot2d([plot_1, plot_2, ...], options, ...) several plot itemsEach plot item can be one of
expr functional expression [parametric, expr1, expr2, range] parametric function [discrete, xlist, ylist] discrete points [discrete, xylist] xylist = [[x1, y1], [x2, y2], ...]If expressions are present, the (common) name and range of the independent variable has to be given as the first option.
Discrete points are drawn as polygons by default. For point symbols, a style option is required, specifying which items in the plot list should be points instead of lines, e.g.
[style, lines, points, lines, ..]
[same_xy, true] equal scales for x and y [logx, true] logrithmic scale(s) [logy, true] [yx_ratio, value] set aspect ratio [x, min, max] horizontal range [y, min, max] vertical range [label, ["text",x,y], ..] write text at specified location(s) [title, "text"] [xlabel, "text"] [ylabel, "text"] [legend, "text1",..,"textn"] legends for n curves [legend, false] suppress legends [grid2d, true] display grid [point_type, value] value = bullet, circle, plus, times, asterisk, box, square, triangle, delta, wedge, nabla, diamond, lozenge [color, value] value = red, green, blue, magenta, cyan, yellow, orange, violet, brown, gray, black, white, #RRGGBB [pdf_file, "filename"] better use absolute pathname [png_file, "filename"] [ps_file, "filename"] [svg_file, "filename"] [gnuplot_default_term_command, "set term wxt 1"] plot to alternative window 1 etc (default: 0) see Maxima manual, section 12.5 "Gnuplot Options"Note: The option name alone is a shorthand for true (if applicable).
The Greek letters can be displayed by {/Symbol a}. This gives "alpha" which corresponds to "a". The relation of the Symbol and alphabet is as follows:
ALPHABET | SYMBOL | ALPHABET | SYMBOL | alphabet | symbol | alphabet | symbol |
---|---|---|---|---|---|---|---|
A | Alpha | N | Nu | a | alpha | n | nu |
B | Beta | O | Omicron | b | beta | o | omicron |
C | Chi | P | Pi | c | chi | p | pi |
D | Delta | Q | Theta | d | delta | q | theta |
E | Epsilon | R | Rho | e | epsilon | r | rho |
F | Phi | S | Sigma | f | phi | s | sigma |
G | Gamma | T | Tau | g | gamma | t | tau |
H | Eta | U | Upsilon | h | eta | u | upsilon |
I | iota | W | Omega | i | iota | w | omega |
K | Kappa | X | Xi | k | kappa | x | xi |
L | Lambda | Y | Psi | l | lambda | y | psi |
M | Mu | Z | Zeta | m | mu | z | zeta |
MAXIMA>>(help) show GCL help MAXIMA>>(run) restart Maxima session MAXIMA>>(bye) exit MAXIMA>>(by) exittop