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ABSTRACT

We review the status of precision tests of the electroweak Standard Model. Radiative corrections
play an important role for the interpretation of precision measurements and provide a window for
the observation of new physics. Implications of recent results from LEP and hadron colliders are
discussed. So far the agreement between experimental data and standard model predictions is al-
most perfect. In order to establish possible deviations from the Standard Model we have to wait for
the next step in accuracy. This will be achieved during this year with about 10° Z’s per experiment.
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1. INTRODUCTION

The large electron positron collider LEP at CERN is the world’s best “microscope” having a
resolution A\ = he/E.,,. = 1.2 GeV/E.,,, (GeV) x 107 m ~ 1.3 x 107% cm at the Z peak. This
allows us to probe nature at the vector boson mass scale and the hope is to find signals of new
structure beyond the Standard Model of electroweak interactions. Since a temperature of 1°K is
equivalent to 8.6 x 107° eV, LEP events correspond to mini fireballs at a temperature of 6 x 10'* °K
a state which presumably existed in the early era of the radiation-dominated universe about 10~
seconds after the big bang. This means that up to this time in the expansion of the universe
photons, gluons etc. were so energetic that they could materialize into fermion-antifermion pairs
which were energetic enough to produce Z and W bosons in annihilation.

The luminosity L, now at ~ 7.0 x 103 cm™! sec™! is expected to reach about ~ 1.6 x 103! cm

sec™! in the future and leads to huge rates of resonant Z boson production making possible very

precise tests of weak neutral current transitions at high energies. The large cross-section at the
Z-peak, agf ~ 1.45 (1.95) nb for f = e, u, 7 and 30.08 (40.65) nb for hadrons, (in brackets, the

eak —
value without QED corrections) gives easily the production of 1 million Z’s per year at LEP1. The
cross-section is enhanced relative to the pure QED process by a factor (Mz/T'z)? ~ 103 or about

150 for leptons and 750 for hadrons.
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Precision experiments will be possible mainly during the first phase (LEP1) when LEP is running
with center of mass (c.m.) energies up to about 110 GeV. In a second stage (LEP2) when energies
up to about 200 GeV can be reached the rates will be lower by more than two orders of magnitude.

After one year of operation the four LEP experiments Aleph, Delphi, L3 and Opal have collected
more than 700 000 Z’s [1]. The weak gauge bosons (intermediate vector bosons), the charged W=
and the neutral Z, were discovered at CERN in 1983 by the UA1 and UA2 collaborations [2]. The
CDF collaboration at FNAL collects vector boson data since 1988 [3]. The data samples collected
in hadron colliders experiments are [4]: 112 Z’and 323 W’s (UA1), 162 Z’s and 1676 W’s (UA2)
and 272 Z’s and 1722 W’s (CDF), identified by their leptonic decays.

The basic processes investigated at LEP1/SLC are fermion pair production ete™ — ff(f # e)
and Bhabha scattering ete™ — eTe”. At LEP2 W-pair production ete™ — WTW~ will be the
main process. Radiative corrections play a crucial role in the interpretation of electroweak precision
measurements. We will concentrate on discussing radiative corrections for LEP1/SLC physics near
the Z peak.

The present experimental bounds on physics beyond the Standard Model (SM) almost exclude the
possibility to find new physics at the Born level (new particles or new couplings) at LEP. Thus,
precision tests beyond the Born level will be the central theme at LEP1. The effects we want to
establish are the genuine weak corrections, the self-interactions of gauge fields, Higgs boson and
top quark interactions or similar effects from new physics, expected to be of the order of about 1%.
Their detection requires both experimental and theoretical uncertainties to be smaller than 0.1%.
Typically the expected level of accuracy for various observables at LEP are My ~ 20 MeV from
the 7 line-shape, 6sin? Oy ~ 0.0015 from the forward-backward asymmetry Appg, dsin Oy ~
0.0004 from left-right asymmetry Apr and 0My ~ 70 MeV from the W-mass measurement at
LEP2.

The weak effects have to be clearly disentangeld from the large QED corrections (40%) which are
common to any G ® U(1),.,. theory. This requires both a precise theoretical understanding, in
particular of the QED corrections ( full two-loop QED, multi soft-photon emission) and a precise



experimental control of the beam properties, detector efficiencies and phase-space cuts (which
requires simulation by Monte Carlo event generators). For neutral current processes up to order
O(a) (one loop corrections), one can separate QED corrections (photonic corrections) and non-
QED corrections (weak corrections) in a gauge invariant and ultraviolet finite way. QED corrections
are the contributions represented by diagrams which involve one extra photon being added to the
Born diagrams of a given process. The extra photon can be either a real bremsstrahlung photon
or a virtual photon loop. The photon vacuum polarization is not included in this QED part of
the electroweak radiative corrections . The non-QED part contains all other diagrams. These
corrections depend on possible deviations from the SM but are independent of the experimental
set up. For quark-loops and hadronic final states in addition QCD corrections must be taken into
account.

For accurate theoretical predictions of vector boson processes, three precisely measured input
parameters are needed. Since only two parameters, namely the fine structure constant o and the
Fermi constant G, are known with high precision, one of the most important primary goals is the
precise determination of the Z-mass. A systematic treatment of the radiative corrections leads
to the result that non-QED and non phase-space corrections are negligible near the Z-peak, such
that a model independent determination of the mass and width of the Z is possible. Existing data
reveal interesting bounds on possible new-physics effects.

Besides the Z-mass measurement each additional precision experiment provides a test of elec-
troweak theory beyond the tree level. Of particular interest are

e The detailed investigation of efe™ — ff around the Z resonance which should allow us to
observe small calculable deviations of the partial and total cross-sections oy = o(eTe™ — ff)
and o4y = >0y and the partial and total widths I'y = I'(Z — ff) and 'y = >, 'y from

their lowest order predictions

V2G, M3, ; 127 I
Ffo: #(Uf_'_af)NCf; Opeak = @ FQZ

where v; = Tsp — 2Q;sin? Oy and ay = Ty; are, respectively, the vector and axial vector
neutral current (NC) couplings for fermions with flavor f. N, is the color factor which is 1
for leptons and 3 for quarks.

e Additional information will be obtained from the on-resonance asymmetries, the forward-
backward asymmetries A{;Jjg and the 7 polarization-asymmetry A7 . If longitudinally po-
larized beams would be realized, the measurement of the left-right asymmetry Az and the

polarized forward-backward asymmetries A?J;’pol would substantially improve the results. All
the asymmetries are functions of the specific ratios

2Ufaf

Ap = — 2
Vi +aj
of the NC couplings, and thus provide accurate determinations of the weak mixing angle
sin? Oyy. At the tree level the on-resonance asymmetries are given by
3 7 3

Aé‘fB = ZAeAf? ALR = A;ol = A€> AJI;fB7pol = ZAf :

The "weak” (non-QED) radiative corrections reveal the asymmetries to be very interesting quan-
tities, mainly because the different asymmetries exhibit different sensitivities to various interesting



effects. The measurement of many independent quantities, which depend in their own way on
unknown physics, is important in order to be able to disentangle the origin of possible deviations
from lowest order predictions.

Notice that higher order predictions depend on the unknown mass of the Higgs boson, the remnant
from spontaneous symmetry breaking, and the mass of the unknown top quark, the missing member
of the 3rd fermion family and other possible unknown physics. While higher order predictions of
physical quantities depend substantially on the unknown top mass the dependence on the unknown
Higgs mass is much weaker. As a first step, data constrain the unknown parameters of the SM.
At the same time bounds on possible extensions of the SM gradually improve.

From the measurements of the Z width I';, LEP has definitely established that only the known
3 light neutrinos exist in nature. An independent neutrino-counting experiment will be the mea-
surement of ete™ — qvi in the region above the Z peak.

2. THE STANDARD MODEL OF ELECTROWEAK INTERACTIONS

The Glashow-Weinberg-Salam model of electroweak interactions [5] together with the QCD sector
of strong interactions [6] defines the standard model (SM) of elementary particle theory. The
known fundamental interactions of elementary particles derive from a local gauge principle with
the gauge group

Groe = SU(3). @ SU2), @ U(1)y

which is broken by the Higgs mechanism to SU(3). ® U(1)¢y,. The SM is determined essentially
by specifying the transformation properties of the massless spin 1/2 matter fields. The SU(3).
distinguishes color triplets of quarks, conjugate triplets of antiquarks and leaves neutrinos and
leptons as singlets. The SU(2), distinguishes between doublets of left-handed particles and singlets

of right-handed particles
Ve u _
— ) ; €Rr,UR, dR
< € )L ( d )L

“n c i MR, CR, S
:U’_ L> s ; ; MR>CR, SR
vy t -
(T_ )L’<b>L T b

The U(1)y assigns a weak hypercharge Y to the SU(2), doublets and singlets, such that @ =
T3 + Y/2 is the conserved electric charge of the particles: @,, =0, @, = 2/3 and Q1 — Q3 =1
for the difference between upper and lower entries of the doublets. Three families of leptons and
quarks exist.

For each factor of Gy, local gauge invariance requires the presence of a set of massless gauge
fields, which couple minimally to the matter fields. The electroweak gauge fields are denoted by
W,i(i =1,2,3) and B, and the corresponding gauge couplings by ¢ and ¢, respectively.



The physical gauge bosons are the photon A, = cos©w B, + sin©wW,3 and the neutral and
charged weak bosons Z,, = cos Oy W3 — sin @WB and VVjE = (W1 FiW,2)/v2. These couple
to the fermion currents ji™ = 3 ; waffyuwf, = — 28in? Oy juem and JjE Jiy Fidoy. The
charged current (CC) has the form

d
Jr= > wvu(l =)+ (@607, (1 =) Uk | s (1)
l=e,u,T b

where quarks may change flavor through the unitary Cabibbo-Kobayashi-Maskawa matrix Ug
[7]. The neutral current (NC) on the other hand is strictly flavor conserving (GIM mechanism)
and is given by

T2 = bpyu(vy — apys)iy (2)
7

where the sum extends over the individual fermion flavors (and color). In our convention the
vector- and axial-vector neutral current coefficients are given by

’Uf = T3f — 2Qf SiIl2 @W 3 af = T3f (3)

respectively, where Ty is the weak isospin (£3) of the fermion f. For three (or more) families Ug
exhibits CP-violating phases which are capable of “explaining” the CP-violation observed in K-
decays. The leptonic CC has some very special properties, which derive from the apparent absence
of right-handed neutrinos. If v,z does not exist the neutrinos must be massless (assuming that
they are Dirac particles like the other fermions) and lepton number L, is conserved individually
for £ = e, u, 7. Among the neutrino puzzles we mention here the following: Do the neutrinos have
a mass and if so why is it so small? Do neutrinos have unusual magnetic moments? Are there
neutrinos which are their own antiparticles (Majorana neutrinos)?

The matter field Lagrangian takes the form

matter Z ¢f27uauwf + _(J+WM + h C. ) JZZM —|— 6]emAM (4)

2v/2

where tan Oy = ¢’/g and e = gsin Oy is the charge of the positron (unification condition). The
discovery of the W¥ and Z bosons at the pp collider at CERN directly confirmed these weak gauge
boson couplings. On the other hand for a direct confirmation of the gauge boson self-interactions
of the Yang-Mills Lagrangian

2 cos HW

1 1 )
£YM = —Z(QLB,, — 8,,Bu)2 — Z(aqu — 8,,W,u- + zgeileMkW,,l)Q (5)

we have to wait for W-pair production at LEP2. Phenomenologically we know that the SU(2), ®
U(1)y symmetry is broken by the mass terms

_ 1 1
Linass = = Y_mpsiy + §M§Zuz“ + §MV2VWJW_“ (6)
7

of the physical particles. We know that adding just these mass terms would spoil the renor-
malizability of the theory. The minimal renormalizable extension is obtained if the masses are
generated by the Higgs mechanism. This requires the introduction of at least one complex scalar
Higgs doublet field ® which couples in a gauge invariant way to the gauge fields (Lp445) and to the
fermions (Lyykawa). The symmetry is then broken by a non-vanishing vacuum expectation value v

4



of the physical Higgs field H. Gauge invariance implies that three of the four fields of ® (complex
doublet) can be gauged away. As a remnant one physical Higgs scalar must exist. In the physical
(unitary) gauge, where ghost particles are absent, we obtain Lpg9s + Lyukawa = Lmass + L with

1 1 _ WL
Lo = Some—Lwzm soms - 2w - "0+ Mg, 0
2 2 4 7o v
2M? ~ M} M, _
WS W H 22,2 + —EW WA (7)

This term is the missing piece needed to render the SM renormalizable. The Higgs sector is
completely unverified so far and its confirmation is a big challenge for experimental particle physics.

The proof of renormalizability by G. 't Hooft [8] rejuvenated particle physics about 20 years ago
and preceded the first phenomenological success of the SM which was the discovery of the neutral
currents [9] in 1973.

A basic consequence of the Higgs mechanism is the validity of the following mass-coupling relations.
The vector boson masses are given by

gvu gu
My =20 vy, =90 8
W T T 9 0s O (8)

The fermion masses and the Higgs mass are given by similar relations

G
mf:\/—gv,mH:\/ﬁv. (9)

in terms of the Yukawa couplings Gy and of the Higgs coupling A. In the standard model the
p-decay constant G, is given by

G, = v
PoavaME V202

and thus the Higgs vacuum expectation value

= 1.166389(22) x 107° (GeV) 2 (10)

v = (V2G,)""* = 246.2186(16) GeV

is a very precisely known quantity, frequently called the Fermi scale, which functions as a con-
version factor between couplings and masses. One important consequence is that the existence of
heavy particles requires strong couplings and for too heavy particles this leads to a breakdown of
perturbation theory. In other words, particles with masses much larger than the Fermi scale are
unnatural in the minimal SM. The non-decoupling of heavy particles is a new feature characteristic
of a spontaneously broken gauge theory. In contrast, in QED and QCD heavy particles decouple
as required by the Appelquist-Carazzone theorem [10].

If we take for granted the SM, we can say that the existence of the Higgs condensate has been
established. Like superconductivity the Higgs could in fact be composite. It is certainly a very
interesting question, whether there is an underlying “BCS-theory” for the Standard Model. In any
case, phenomenologically one expects the SM to work as a low energy effective theory at scales
below 1 TeV.

At the formal level the role played by the Higgs mechanism is the following: It

e breaks SU(2), @ U(1)y to U(1)em,



e generates the masses of the weak gauge bosons W*, Z and the fermions,

e provides a “physical cut-off” to the massive vector boson gauge theory.
The price we have to pay is that
e a neutral physical scalar particle H must exist.

The couplings of the Higgs boson are universally proportional to the fermion mass for fermions
and proportional to the boson mass-squared for bosons. The extremely weak couplings to light
fermions explain why the Higgs is hidden so well from experimental discovery.

Another feature of the minimal Higgs scheme is that all fermion masses and the Uk, mixing pa-
rameters are free parameters (13 for the 3 families). This is considered to be a serious shortcoming
of the minimal SM.

Also the mass of the Higgs is a free unknown parameter. At present the limit for my from LEP
experiments is [11]

my > 49 GeV (95% CL) . (11)

Possible windows for a light Higgs have been excluded all the way down to my = 0. At LEP2 the
Higgs search can be extended to about my ~ M [12]. If the Higgs should be heavier, and this is
likely to be the case, a discovery is possible only at future colliders like SSC or LHC.

We should point out that the form of the weak currents is a direct consequence of the minimal Higgs
assumption: Since each family is made up of fields with identical SU(2); ® U(1)y transformation
laws invariant Yukawa couplings are possible for combinations of fields from different families.

With the fields having identical SU(2),®U(1)y quantum numbers one can form horizontal vectors.
For the quarks there are the 4 horizontal vectors q,r, qar, qur, gar Where q, = (u,c,t) and g4 =

(d,s,b).

In order to transform the fermion mass matrix to diagonal form we must perform independent
global unitary transformations of the 4 horizontal vectors. Whereas, unitary transformations of
Qur, 9ar and (qu,qq)r, as a doublet, do not change the matter field Lagrangian, an independent
transformation of ¢4z, leads to “mismatch” Gy = Ugkrqqr of the quark fields in the charged current.
This leads us to the form of the charged current given in Eq. (1) with the unitary 3 x 3 matrix

Vud Vus Vub
Uev=1| Vea Ves Vi (12)
Via Vie Vi

which may be parametrized in terms of 3 rotation angles and a phase.

This family mixing occurs if 4 independent unitary transformations are required to diagonalize the
mass matrix, and this is the case if particles of the same charge all have different masses. This
happens to be so for the quarks. If we believe that all neutrinos are massless no mixing in the
leptonic current is possible. Indeed all searches for lepton number violation have yielded no signal
so far.

Due to unitarity, there is no mixing effect in the neutral current, since ¢y;Gar = Garqar, - This is
called the GIM-mechanism explaining the absence of flavor changing neutral currents (FCNC). In



fact, in order to explain the absence of FCNC’s, Glashow, Iliopoulos and Maiani had to propose,
in 1970, the existence of a fourth quark, the charm quark c¢ as a doublet partner of the s quark.
At that time only three quarks where known [13].

The discovery of the J/1 [14] revealed the completeness of the 2nd family with the charm quark
c. The first 3rd family member showed up in 1975 with the discovery of the 7 [15]. With the
observation of the YT [16] the existence of the b quark could be established. We are still waiting
for the direct observation of bottom’s doublet partner, the top quark. The direct lower limit for
my from CDF is [4]

my > 89 GeV . (13)

In models with charged Higges, due to the possible decay t — HTb, only the weaker limit m; >
45 GeV (95% CL) can be obtained [17]. The properties of the weak currents, which essentially
derive from the minimal Higgs assumption, were established in the exciting history of the weak
interactions which started with the Fermi model in 1934. Here, we only mention some more recent
tests of the basic structure of the weak currents: [18]

e V-A structure of the CC:
pu~decay provides the most sensitive, clean and direct tests for right-handed currents. The
best limit for the transition amplitude is

Avia
Ay_4

<0.029 (90%CL)

e absence of FCNC (at tree level):

DKy — ptp”)/T(Kp —all) = (9.57%3) x 107°
(D — ptp)/T(D° — all) < 1.1 x107°
(B = ete)/T(BY = all) < 3x107°

FCNC processes are allowed only through higher order transitions.

e special properties of the lepton current:
Present limits on the neutrino masses are:
m,, < 94eV (from3H — 3H, e 1)
m,, < 250keV  (from 7 — pv,)
m,. < 35 MeV (from 7= — 37 v;)

L, conservation is established by the branching fractions:

R< 49x107"" (from pu — ev)
R< 1.0x107¥ (from pu — 3e)

Neutrino mixing searches (v-oscillations v, <+ v4) have also been negative so far.

No deviations from the SM has yet been established. Open problems are the measurements of direct
CP-violation (¢’) in the K-meson system and CP-violation in the B-meson system [19]. We still do
not know whether CP-violation is a phenomenon which has its “origin” in the CKM-phase solely,
or if it’s due to a new super-weak interaction outside the SM. Still unsolved is the solar neutrino

7



problem [20]. The observed solar v, flux is too low. This could signal flavor mixing (causing
conversion of v, into v, ; not visible to present detectors) of the neutrinos which is possible only if
the neutrinos have different masses. Another possibility would be that the v, is unstable.

Fixing the parameters of the SM

Besides the fermion masses, the CKM-mixing parameters and the Higgs mass, the SM has 3
basic parameters g, ¢’ and v. They are conventionally replaced by parameters which can be
measured directly in a physical process. In view of the mass-coupling relations, typical for a
spontaneously broken gauge theory, masses and couplings are not independent parameters and
many different parametrizations may be advocated. A specific choice of experimental data points
as input parameters defines a renormalization scheme. Like in QED a natural choice would be the
fine structure constant and the physical particle masses (on-shell scheme):

Oé,Mw,MZ,mf,mH (14)

where the universal fine structure constant o = e?/47 = 1/137.0359895(61) may be determined in
low momentum transfer Coulomb scattering. Since My, will not be known accurately at LEP1 we
must use the precisely determined Fermi constant GG, obtained from the muon decay rate in place
of Myy. Thus, we will use the parameter set

OK,G“,MZ,mf,mH (15)

for accurate predictions of measurable quantities. In the pre-LEP era when M, was not known or
known with rather limited accuracy from the pp-collider, instead of M, the weak mixing parameter
sin? Oy had to be used. This parameter has been measured first in low momentum transfer
neutrino scattering. Predictions could then be made starting from the low energy parametrization

a, Gu,sin2 Oun, mys, My (16)

where we have denoted sin® Oy by sin® O,y in order to make precise that the value has been
obtained from vN-scattering. The precise definition of sin? Oy is process dependent, because the
values measured in different processes differ by higher order corrections. Since sin? Oy measure-
ments are important in the determination of the SM parameters we now briefly consider neutrino
scattering.

For a low energy definition of the weak mixing angle we may use low momentum transfer neutrino
electron scattering where the cross section ratio

Ry, = o(Due)/o(vue) = (€ —E+1)/(€ +E+1) (17)

is independent of the neutral current coupling Ge. The latter is defined by ( E, the incident
neutrino energy )

1 1/2
Gre = <8WU(VM6)/meEV[(1 +EP+5(1- 5)2]> — )G, (18)

and is equivalent to a determination of the p-parameter, which is unity to lowest order in the
Standard Model . The parameter ¢ describes the relative strength of the vector coupling of the
leptons

Ve

£ = —=1- 4sin®©,,. (19)



where sin? ©,,. stands for this particular definition of sin? Oy,. While the purely leptonic v,e-
scattering provides a clean determination of the weak mixing parameter the low event rates lead
to a rather limited accuracy only. The best accuracy which should be achievable at CHARM 11 is
J sin? ©,,e > 0.005. The present value is sin? O,,e = 0.240 £ 0.012 [21].

a , Thomson limit ¢ — 0

§ Gy
>< : sinz@yﬂe, Pve = Gne /Gy

Figure 1: Processes used to define the low energy parameters

More accurate values for sin? Oy, are obtained from semi-leptonic neutral current reactions. In
particular the deep inelastic neutrino nucleus reactions v,N — p~X and v,N — v,X lead to
rather precise determinations of the neutral to charged current ratios

o(vyN = 1,X) R o(uN — 1, X) o(v,N — ptX)
o(v,N = p=X)’ o(r,N — ptX) o(v,N — p=X)

R, = (20)
and R, has been measured to 1% accuracy by CDHS and CHARM [22]. In the Born approximation

of the low energy effective current-current interaction, Eq. (24) below, assuming a valence quark
parton model and approximately isoscalar targets N (N”_N” = 0, N consisting of NV, protons and

Np+N7L
N,, neutrons) one obtains the simple result
R,=gi+gr7, Ro=gi+gn/r (21)
where
2 2 2 1 ;2 S 2 2 2 D 4
91, = €1y T 14~ 5 — sin Oun + gsin OuN, 9r =CRu t Ry = gsin OunN - (22)

In the SM the predictions for the couplings may be written in the form [23]

ELf = PuN (T3f — QKN sin® O + )\Lf)
ERf = PuN (_QfKWN sin® Oy + )\Rf) (23)

where p,n (= 1), kuny (= 1) and Ay (= 0) include radiative corrections . The lowest order values
are given in parentheses. One-loop effects will be discussed at the end of Section 4. For a precise
comparison of sin? © measurements, a process independent definition of sin? Oy, is needed. A
convenient convention, proposed by Sirlin in this context, is the definition in terms of the physical
vector boson masses (assuming p... = 1, see Eq. (28) below). By including process-dependent
radiative corrections sin? Oy can be computed from sin? ©,,~ measured in a particular process.



The low energy four-fermion processes are described by the effective Fermi-type Lagrangian
1

Lepr=—F7%

AR

which is the low energy effective form (|¢?| < Mg,, M%) of

(GuTf '™ + GnedZ I ) + ejim A, (24)

o qg + _ g Z -em
Lin =575 (JEwH= 4 he) + Soos O n 2"+ edi A (25)

The electroweak unification condition and the relations between the parameters appearing in (24)
and (25) read

i) VAra = e = ¢sin Oy

i) V2, = e = &
V2Gne = Mz 5)252 ow p%% (26)
i) p = Fe = A@Mi%w = Prree
For the moment we have relaxed from the assumption py = 1 valid in the minimal SM.
From the parameter relations we now obtain the tree level relation
o 6_2 i) g% sin? Oy
4 4
9 V2G, M, sin® Oy,
2
WD /oG, M <1 _ fﬁ;) |
If radiative corrections are included, this relation is modified to [24]
2
V2G, M2, (1 - fk) =2 - < (27)

which is the defining equation for Ar (with py kept fixed at its tree level value!). In the following
we take po = 1, as appropriate for Higgse doublets, such that by the last relation of Eq. (26)

sin? Oy =1 — 2. (28)
The definition of Ar by Eq. (27) is conceptually very simple, all quantities involved have been

measured and can be found in the particle data tables.

Later, we will often use a and the physical particle masses as a convenient set of independent
parameters. The Fermi constant is then a calculable quantity (u-decay amplitude). Originally, the
p life-time 7, has been calculated within the framework of the effective Fermi interaction.

If we include QED corrections (see Fig. 2) we obtain the result

1 G*md 8m?2 2 25
T “(1— m@) [1+3(1+—“10gm“)(——7r2) . (29)
m ™ T m

T, 19278 2

This formula is used as the defining equation for G, in terms of the experimental s life-time.
Present data [18] yield the value given in Eq. (10).

10



O K KK

Figure 2: p decay with QED corrections in the effective Fermi model

The Z-mass has been determined rather accurately now at LEP [1]
My =91.174 £ 0.021 GeV (30)

while the W mass is known from the collider experiments UA2 [2] and CDF [3]. Using their
determination of the mass ratio My /M, for which common systematic errors largely drop out,
together with the Z mass from LEP1 we obtain (in brakets the absolute determination from CDF)

My =80.19 £0.32(79.91 £0.39) GeV . (31)
The value for sin? Oy, obtained from the hadron colliders is
sin? O = 0.2265 + 0.0062 (32)
independent of model assumptions. The v N scattering data yield
sin? Oy = 0.232 4 0.006 (33)

assuming the SM with m; = 60 GeV and my = 100 GeV [22].

In Table 1 and Figure 3 the status of sin? Oy -measurements is summarized. The results are in
good agreement with each other. By sin? ©, we have denoted sin? © measured at the Z-resonance
and by sin? ©,,. the one measured by v,e-scattering. In Fig. 4 we show conversion factors for
various definitions of sin? Oy,. For a discussion we refer the reader to Section 4.

Table 1. sin? Oy measurements in NC processes [4,22,18,21,1]

Measurement sin” Oy
A (op) 0.2265 + 0.0062 (ave.)
UA2 02202 + 0.0084 =+ 0.0045
CDF 0229 £ 0016 £ 0.002
(gg—g)yN 0.232  + 0.006 (ave.)
CDHS 02275 £ 0.005 £ 0.005
CHARM 0236 £ 0.005 <+ 0.005
P. V. in Cs 0.215 + 0.007 £ [0.017]*"
~D (SLAC) 0217 4+ 0015 4+ [0.013]"
Rwe:ZZZZ CHARMII |0240 + 0009 + 0.008
assume m; = 140 £40 — | 0.230 + 0.016
Iy, A%, LEP 02302 £ 0.0025
assume m; = 140 £40 — | 0.220 + 0.006

11
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Figure 3: Comparison of various sin? © measurements.
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Figure 4: my-dependence of various sin? © conversions.
Assuming pyee = 1, as required by the minimal SM, recent global fits yield for the weak mixing
angle and the top mass (68%C.L.)

sin? @y = 0.2273 £0.0033, m, = 12273 GeV  Ref. 25
sin® Oy = 0.2291 £ 0.0040, m, = 12475377 GeV Ref. 26 (34)
sin?© = 0.2327 4+ 0.0009, m; = 126 £304+ 18 GeV Ref. 1

when 40 GeV < my <1 TeV .

A very important parameter in electroweak theory is the p-parameter, defined by the neutral to
charged current ratio at low energy. The v N scattering data yield the most sensitive determination
of the p-parameter.

Taking p and sin® Oy as independent parameters, a recent global fit to all NC-data [26] yields (the
values indicated with an asterisk I have obtained by scaling with the theoretical predictions)
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m; (GeV) 100 140 180 200

sin? Oy 02305  0.2260° 0.2207° 0.2215 | & 0.0010
sin? Oy (SM) | 0.23027 0.22580  0.22048 0.21741

Po 1.003  0.99996* 0.996* 0.994 | = 0.003
p (SM) 1.00776 1.01082 1.01492 1.01737

where the theoretical values (SM) are given for my = 100 GeV. py = % corresponds to piee if
we ignore possible radiative corrections from non-standard physics. Thus py is remarkably close
to the minimal standard model value ppee = 1 .

These experimental results are extremely important constraints for possible deviations from the
SM. For example, the measured value for sin? Oy is clearly in contradiction to the simplest grand
unified model, namely, minimal SU(5), which predicts sin? Oy ~ 0.211 — 0.218. Independently,
this theory has been ruled out by proton decay experiments. The bounds on the p-parameter
permit additional scalar doublets or singlets which do not affect the minimal SM value py... = 1.
However, possible Higgs triplet contaminations are limited because they imply p;... # 1 and a pure
triplet (AT, AT, A%) would give pie. = 1/2.

3. LEP PHYSICS, BASIC PROCESSES

3.1 Production and Decay of the Weak Vector Bosons

At lowest order, production and decay of massive vector bosons are described by the Born diagrams

= 2COS¢9fca( ( vr— af%—’))aﬁ fcﬁééc

W‘if< LT 575 e (10 =) sl (3)

if we ignore Cabibbo-Kobayashi-Maskawa mixing for the quark flavors in 1st approximation. We
have indicated the color and spinor indices. Both Z and W¥ production and decay may be
described by a general vertex §fyy*(v — a7s)fi. The production cross section for unpolarized
beams in the zero-width approximation is:

fi(pr) + fa(p2) = V(p)

1 1 1 1
Ncl NCQ (281 + 1) (282 + 1)

Z |T12‘2
My

o(fit o V)= 70 ((pr+p2)? — ME) - (36)

where T}y is the transition matrix element and the sum extends over color (¢;) and spin (s;) of
initial and final state particles. With respect to the initial states, the cross section is determined
by the color and spin averages of |T12]?.

The decay width is determined by the same Y |T15]? (the processes are related by crossing) and
given by

V(p) = fi(p1) + f2(p2)

13



1 My 2|p| 3 |Ths|?

v — fo) = 37
V= ht ) = G T Ter sy, M2 (87)
where p'is the decay momentum of a fermion in the center of mass frame.
The T-matrix element can be easily obtained
Tia = §0a., (p2; 52) (V" (v — a75))aptia,, (P1: $1)€,,(Ps A)dze -
Taking |T}»|? and summing over color and spin one obtains
|Ty2]2 ~ s \m24m?2 m2—m2)2
ZM‘;/Q — g2ch {(U2 —I—CL2) 1— (2 _ M_\Q/) 21M\2,2 _ ( EM“;) )
2 _ 2 8 Ymuim2
As a result the formula for the partial widths are given by
\/EG MS 215 m2+m2 m2_m2 2
FV—>f1f_2 = 12#7r Vj\l[_pi/‘NCf {(02 + a2) <1 - %( }\4‘2/ ) %( 1M‘4/2) ) (38)
or, for light fermions m; < My, |p| ~ 2v,
V2G M3 V2G, M
Pwonm = 1o WNCJ”|V12|2 s Tzspf= o - cf(%% + a%) (39)

where we have indicated the Cabibbo-Kobayashi-Maskawa matrix element Vj, for the charged
current. Notice that for sin? Oy = 0 (i.e. ¢ =0) My = My and

FW—>f1f2 = FZ—>f1f1 + FZ—>f2f2 :

Since m; > 89 GV, the decays Z — tt and W — tb are energetically forbidden. LEP has excluded
the existence of a fourth family neutrino of mass m, < 40 GeV [1]. Since the heaviest fermion, the
b quark, has mass m;, ~ 4.8 GeV we can safely neglect all mass effects in calculating the widths.

By TI'inw = 31'z-,,5 we denote the invisible width for the decays into v., v, and v;. I'j,q is the total
hadronic width for the decays into u, d, s, ¢ and b quarks or the corresponding hadronic states.
The total Z-width (and similarly the W-width) is given with high accuracy by the sum over the
two body decays

Dy =Tz =Y Ty; Ty=0y;7=", fr(sin’ O )
7

with ff(sin® Ow) = 1 — 4|Qs|sin® Ow + 8Q3sin*Oy normalized to the v channel. Since my > 49
GeV, the contribution I'y_, 5 ;7 which would be non-negligible for a very light Higgs also can be
ignored.

14



Table 2. Lowest order predictions for I'yy and I'y for sin? Oy = 0.23,
My, =80.19(32) GeV and My = 91.174(21) GeV.

W= fife Z=ff
fifz ToMeV) B.(%) | ff f(sin?Op)T To(MeV) B.(%)
(D, 225.6 111 | vy 1 165.8 6.8
inv 4975 205
0 0.5032 83.4 3.4
ud 676.7  33.3 | wu 0.5748 286.0  11.8
dd  0.7404 368.3 15.2
had 1353.4  66.6 | had 1676.6  69.2
tot 2030.1  100.0 | tot 2424.3  100.0

We now consider Z—production in ete~collisions. In the light fermion approximation

> |Tho? Uysr
— 3. 167 2241
M2 "My,

and hence, in the narrow width approximation,
+ - . FZ—)e*e* 2
olete” = 7)) =12n———7d(s — M3)
My
with s = (p; + p2)? = 4E}? and Fj, the beam energy.

Using the relation (the Breit-Wigner form will be “derived” below)

Myl
A2y — zLlz
mo(s = My) = lim, (s — M2)2+T% M2

we easily obtain the cross section for (finite width) resonance production, described by a Breit-
Wigner line-shape,

—_ 127 FZ—)eeFZM%
T AT AT

Near resonance, the cross section for ete™ — Z — ff is

- r
olete” = Z — ff)=olete” — 7). 2224

Iz
and hence
ol,=o(ete™ = Z = ff) = agoak = ]\;;Z)iwa%M% . (40)
where ageak is the peak cross section (at s = M2)
o 12 T I'y (41)

peak — @F_ZE .
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Table 3. Lowest order peak cross section Ugeak. My and I'y as in Tab. 2.
(1GeV~2 = 0.38938 x 10° nb)

f v i U d inv | had | tot
ageak(nb) 4.16 | 2.09 | 7.17 | 9.23 | 12.47 | 42.03 | 60.77

3.2 The process ete™ — ff, (ff7)(f #e)

We now consider in detail the process

e (py) +e (p=) = flaw) + f(g=) + “y(k)”

in the Born approximation given by the diagrams in Fig. 5. Real 7 emission will be considered
below.

In the center of mass frame in terms of the beam energy s = (p, +p_)? =4E? and t = (py —q,)* =
2F?2(1—cos 0) with 6 the angle between p, and ¢, . By the arguments given in the previous chapter
we can safely neglect the fermion masses if we assume s > m? (the bottom quark is the heaviest
of the final state fermions at LEP energies). t¢ production is not considered.

et f

e S
Figure 5: Born diagrams for the process ete™ — ff

Since we are considering beam energies Ej far above the T threshold the fermions are essentially
massless and helicity is a good quantum number. It is therefore convenient to use left- and right-
handed fields f; = 1‘% fand fgr = H% f which describe polarized fermion states: The couplings

are
&<f = Qi w%w<f = M fynluy — aps)f (42)
f f

where fy"f = fiy* fo+ fry" fr and fo*(v; —asys) f = epp fry" fu+ers fry fr with ey = vy +ay
and egpf = vy — ay.

We notice that for the vector-like couplings (i.e. vector or axial-vector) no fg...fr or f...fr
terms are present. This is a general feature of any gauge interaction (coupling via spin 1 vector
fields). Since e; describes a left-handed electron and a right-handed positron etc. there are
no transitions from equal helicity ete™ into equal helicity ff states! Therefore there are only
four possible transition amplitudes Tj,, for polarized states: Trr,Tir, Trr, Trr, Where h; =
—1 (L), +1 (R) is the electron helicity and hy = —1 (L), +1 (R) the final state helicity of the
fermion f. The helicity of the antiparticle in each case is fixed to the opposite value. This is true
for any gauge theory!

The differential cross section is given by

do__ s
dcos 487

Nep Y T, |? (43)
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with

\/§GHM% 4oy 2

s MZ M T, @@=~

3
|Thehf|2 = §(1 + cos 6)? EheeChyf

The sign +(—) is for TLLaTRR (TLRaTRL)-

In the cross section we distinguish three pieces, the pure QED cross section, the v — Z interference
term and the pure Z-exchange cross section:

do
dcosf

_ 2l vZ Z
(cte™ = 7%, 2" = Ff) = do do do

_dcosﬁ_l_dcosHdecosH' (44)

Of course, in general, there is no way to measure these terms individually. However, individual
terms may dominate as for example the QED piece at low s or the Z-exchange term near the
Z-resonance.

For unpolarized beams and final states we obtain

Ta2Q2N,
d[iize = %(1 + cos? )
a 2
jg;sze - _WNQ[RFJX(S) {wvevy (14 cos?0)
+2a.aycos b} (45)
oZ G2 M4
ddcose = 1%7rsZ cf‘X(S>|2 ’ {(Ug + az)(ng + a%>(1 + COS2 ‘9)
+8aca v vy cos O}
with the resonance factor
S
X(s) =

S—M%‘I‘ZMZrZ '

Near the Z-resonance, the process ete™ — ff is predominantly a parity violating weak interaction
transition. The axial couplings a; lead to asymmetries at the tree level.

i) asymmetry in the angular distribution due to terms linear in cos 6 called forward-backward
asymmetry or charge asymmetry Arp, e.g. inete™ — putu~ the ut is produced with different
probability in opposite directions relative to the incoming e*t. !

ii) asymmetry between cross sections for (polarized) L and R states, the so called left-right
asymmetries Ay g.

Before we discuss the asymmetries in more detail, we briefly consider the total cross section.
Total cross section

The total cross section, with respect to the final state couplings, may be split into a pure vector
and a pure axial-vector piece

+1 do
% = /_1 dcosedcos@ = 0o + UéfA (46)

IThis type of asymmetry (though much smaller) is also present in pure QED (parity conserving) coming from
higher order effects (box diagrams).
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with

ot 4ma?Q2N, 20Q sV2G, M2 N, c

oo = 7; %lsf ! _ 22y 35" Z fRex( )vevf%—i"&rzs f|x| (v +a)
G2ZMLN,

O-(‘?fA = u67rZs Cf‘X|2(U2 ag)aff .

Near the Z-resonance the pure Z-exchange term dominates and we may rewrite the cross section
in the form:

'yZ

s — M2

0f

For Ry we find a v — Z interference correction

_ 8raQ.Qy VU
1= VG, M2 (2 + @) (VP + @)

At resonance (s = M%) this correction does not contribute. 0g; is the QED background term

202
o draQ3 Ny
0f 3s

which leads to a correction below 1% at resonance. Finally, using formula (39) for the width we
find Egs. (40) and (41) in agreement with our simplified derivation of the previous chapter. Closer
inspection shows that the cross section formula

f __ 12aDedy My | T Ty } f
e (S) 4(8—M%)2+82£—12Z7{M2 +Ry- M2 +Lrai, T T 00qEp (47)

N

yields a model independent fit of the Z-line-shape provided I';, I'y and I'; are the physical (partial)
widths, i.e. they include higher order corrections. We have included possible corrections propor—

g2
tional to I'y /M, and the ellipses represent higher order terms in the expansion in = M]\gz and £ e

One important point (see below) is that I'z(s) defined in terms of the Z self-energy Il4(s) by
MzT z(s) = Imllz(s) is to high accuracy proportional to s:

3.3 Asymmetries
A. Forward-backward asymmetry:

The differential cross section has a cos8 even and a cosf odd term:

do

_ 3 2
Toosd = OV 8(1 + cos“) + Agycosd (48)

where oy is the total cross section and

Aof == A —|—A

Agf = anNCf fG MZRexaeaf
G2 M
Af; = TENeglxPacagvevy

2ms
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The forward-backward asymmetry is

do() —do(m —0) 8Ags cosb

A = =
rp(s, cos ) do(0) +do(m—0) 3 oof 1+ cos?d

or in integrated form

(fol - f—ol) d cos 07375 _ Aoy

Arp(s) = 49
r5(3) IS dcos@dg;’se oof (49)
Particular regimes of interest are the following:
i) For small s < MZ we have
gof 2 V26, - ve(Quy) s
R = — NC —'— NC 50
0/ O {Qf I o Y = s/M?2 (50)
where
4 2
Oup = OoleTe” =" = ptp”) = ga
s
is the QED “point” cross section used to normalize the hadronic cross section
Ohaa = o(efe” — hadrons ) = Y oy,
quark ¢
. Ohad
R(s) = =Y R,~3 > Q: (51)
Opp q P
mg<y/s

Notice that in this quantity the color factor 3 can be directly measured! For the asymmetry we
get

7 3 a V2G s
ALl (s) ~ Za, | 2L = 52
75 () 8" <Qf Ta 1—s/M2 (52)
an expression which vanishes for s — 0.
ii) For s ~ M, we find
AZ(MZ) 3 2u.a. 2vra
AFB(ME):?C*W:_' 2 2'2ff2' (53)
o5r(Mz) 4 vZ+a2 vi+ai
Asymmetries at the Z—resonance can all be expressed in terms of the coupling ratios
2 g2, — g2
Ay = vfay _ SLf T CRf (54)

2 2 — 2 2
vf—iraf aLf—l—aRf

From the representation in terms of left- and right-handed couplings introduced earlier we see
that Ay measures the normalized difference between left-handed and right-handed transition am-
plitudes. For Arp we have

7 3
Ay (MZ) = 2A.A;. (55)
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It is important to notice that

2€

Ae:mWithgzz—zzl—ZlSinZ@W

is a quantity which would vanish for sin? @y, = 0.25. Since the experimental value for sin® Oy,
is about 0.23 A, is unfortunately rather small. A small difference of large numbers is difficult to
determine precisely. By universality A, is the same for £ = e, 4 and 7 and hence

- 3
ARt (M3) = ZAg ~ 3¢

Table 4. ete™ — ff forward-backward asymmetry at the
Z-peak for various values of sin® Oy

sin?©Oy, [ 022 [ 023 [ 0.24 [0.25
3 012 | 0.08 | 004 | 0
A, 0.237 | 0.159 | 0.0799 | 0
AR 10.0420 | 0.0190 | 0.0048 | 0
A%, 1 0.1253 | 0.0802 | 0.0382 | 0
Aty 10,1673 | 0.1117 | 0.0557 | 0

B. Final state polarization asymmetry

We only consider the integrated asymmetry

W= olete” — fL]i) —o(ete” — fR_]i)
oL g(etem — frf) +o(etem = frf)

(56)

at the Z-resonance. Using the helicity amplitudes |T},5 |*> we obtain:

oz = E =) _ (57)

Af
(e1s +cky)

pol
which is independent of the initial state couplings. This asymmetry cannot be measured for quarks
which hadronize into hadron showers. The only case which can be investigated is the 7-polarization
where it is possible to reconstruct the 7-polarization from the decays 7 — 7wv, 7 — pv and 7 — a v
with the subsequent decays p — 7w and a; — 7w, For ete™ — 777~ we have

(M2)= 4, = 2 (58)

A “ire

pol

which is linear in the vector coupling . Some numerical values have been given in Table 4.
C. Polarized beams
With polarized beams one can measure a number of additional asymmetries:

a) Initial state transversal polarization asymmetry
(azimuthal asymmetry for natural polarization)

In the magnetic field of a ring collider the e*-spins tend to line up with the magnetic field (—y-
direction) such that a natural transverse polarization is set up. If we assume the electron to move
in the z-direction we may write the eT-polarization vector in the form
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—

Pt = (Pf cosp®, Pising™®, Pf)

where Pf measures the transverse and P; the longitudinal degree of polarization. p* = —m/2
and P; = 0 means natural polarization. If beams are transversely polarized one has an azimuthal
asymmetry and one defines

4 [dQ cosQapZ—g (e+(Pf) +e (P)— ff)

L= = = (59)
PIPL [dQ% (e+(PF) +e~(PT) — fF)
We just give, without derivation, the result one obtains for s = MZ:
v — a? 1— &2
A, (M2) = — 1t (60)

v2 4 a2 1+ g2
a quantity which is independent of the final state.
b) Initial state longitudinal polarization asymmetry

In this case, assuming longitudinally polarized beams, one measures the total cross section with
left-handed and right-handed electrons separately and defines

olepet = ff) —olezet — ff)

An = ez 5 D) tolene” 1D o
At s = M3 one finds
2 ele — Che
Apr(Mz) = E Ae >~ 2¢ (62)

for the integrated asymmetry.

The left-right asymmetry is a very important observable due to the following properties: It is

e a ratio of total cross sections

e independent of the final state 2

e linear in &
The first property is very important since the notoriously large QED and QCD corrections are
almost identical for left- and right-handed states and therefore drop out in the ratio almost com-

pletely. The second property implies that one can sum over all flavors gaining enormously in
statistics. The third property tells us that Apg is enhanced by a factor 2/(3¢) relative to A.

In addition the polarized forward-backward asymmetries can be measured:

2 (f()l B f31)dcosedf§s9(PL+ 7£ O) B (f()l B f81>dcos‘9di§;9(PL_ 7£ O)

ALp oo =
FBpol = pFy pp JH deos 79 (P #0) + [T dcos 679 (Pp # 0)

(63)

2This is true only for the integrated asymmetry. The angular distributions Aé r(cos®) depend on the flavor f.
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which on the Z-resonance yields:

3
A?B,pol(M%> = ZAf (64>

3.4 Conclusions:

The measurement of asymmetries opens up the possibility to determine many independent observ-
ables. This is crucial for precision tests of the SM. Two points make asymmetries at the Z-peak
very interesting. First, at the Z-peak very high rates of events are available which makes high pre-
cision tests possible. Second, at the Z-peak one is dealing almost purely with a weak NC process!
No detailed clean tests of the NC were possible before LEP. The clean v, e-scattering processes
suffer from low rates and the deep inelastic v, /N-scattering data from hadronic uncertainties.

Longitudinally polarized beams are highly desired, since only in this case one has good observables
that can test
2vfaf

Af—i
2 2
vf+af

for individual flavors to a good accuracy. This is an important supplement to the measurement of
the partial widths which yields tests of

2, 2
Uf + af'
For precision tests it will be crucial to carefully analyse the following types of corrections:

i) QED corrections, bremsstrahlung;

iii) QCD corrections for hadronic final states;

)
ii) electroweak “non-QED” corrections;
)
iv)

mass effects.

These corrections will be discussed in the following. Particularly interesting are the “non-QED”
higher order corrections since they are the key in finding deviations from the SM at its quantum
level.
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4. RADIATIVE CORRECTIONS FOR PRECISION TESTS
4.1 Renormalization

For the calculation of higher order terms we must specify the renormalization procedure. We
choose for the independent parameters the physical particle masses plus a coupling constant. A
natural choice for the coupling is the universal (due to electromagnetic current conservation) fine
structure constant «. This defines a QED-like on-shell renormalization scheme. All other couplings
are then fixed (dependent parameters) by the mass-coupling relations:

M2
sin?@y = 1-— -
M3
VAT« ,  VATa
~ sin®y 9= os Ow
1
V26, = = T (65)

v M2 sin’ Oy
The renormalization then may be performed in two steps:
1. Parameter renormalization

The parameters in the true bare Lagrangian are the bare parameters oy, My, ---. We reparametrize
the bare Lagrangian in terms of the physical parameters (experimental input) a, My, - - - by the
following parameter renormalizations:

SM2
MZ, = MZ+06ME =M (1+ M2V);V:W,Z
1%
5
a, = a—l—éaza(l—l——a) (66)
8]

which have to be performed for the dependent parameters (which serve as convenient abbreviations
only) correspondingly :

§ sin?
sin? @y, = sin® O + dsin® O = sin? Oy (1 + w
sin” Oy
G,
Gw = G,+6G, =G, (1+—=) (67)
Gy
where, to linear order (suitable for one-loop calculations):
§sin? Oy ) SMZ  SM3,
I W ot2 O _
sin® Oy ot Owlgp ~ 3p)
0G, 251)_11 :6_04_5]\425[,_5:?*11;2@”/ . (68)
G, (O a My, sin” Oy

It is important to notice that these parameter shifts do not alter the invariance properties of the
Lagrangian. Since the bare parameters and the renormalized parameters (determined by S-matrix
elements) both are gauge invariant the counterterms are gauge invariant.

2. Field renormalization (wave-function renormalization)

In order that the fields describe properly normalized scattering states we must renormalize them
such that the residue of the propagator pole is unity.

For simplicity we ignore the infrared problem caused by soft photon effects. This problem has to be
treated in the same way as in pure QED and we assume the reader to be familiar with it. We shall
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use an infinitesimal photon mass m., as an infrared regulator at intermediate steps. For observable
quantities the limit m, — 0 must exist.

We then write for the physical fields:

Vub = ZVVM ren V= Aa Z> Wi
Yo = \/ZfUfren
H, = ZuHen (69)

and the Z-factors are fixed by the condition that propagators of the renormalized fields have residue
one at the pole. To leading order Z; = 1 and we may write

1
Z,-:1+5Z,-;\/Z-:1+§6Zi+---. (70)

The renormalization procedure for physical amplitudes may be summarized by the following simple
rules: Performing the parameter shifts and the field renormalizations and expanding to linear order
(appropriate for one-loop calculations), for the fermion-gauge boson vertices, we get the simple
substitutions

e py* — eQyH (1 + %5ZV +02¢ + 6—:)
Mz i (T3f(1 —75) — 2Q sin’ @W) — Mzp (T3f(1 — 795) — 2Q sin® Oy (1 + 71?21?5))
1 15M% 106G,
Mw My

v V(L =) - v V(=)
M2 5G,
(1 + 307w + 5625, + 367, + $ ok %G—:)

and analogously for the other vertices.

The mass counterterms and the wave-function factors are determined by the transverse parts of
the vector boson self-energies Ily, (V =, Z, W). In terms of the self-energies the propagators are
given by

—ighv

D (k) = !
v ) = T, ) (71)

Since the g"-term determines the physical transverse part we need to consider this term only.

Strictly speaking, this is true for the W-propagator only. For the Z-propagator the situation is complicated by
v — Z-mixing. Due to mixing one cannot treat the Z and the v propagators separately. They rather form a 2 X
2 -matrix propagator. The simplest way to treat this problem is to start from the inverse propagator given by the
irreducible self-energies (sum of one-particle irreducible diagrams). Again we restrict ourselves to a discussion of
the transverse part and we take out a trivial factor —i g"” in order to keep notation as simple as possible. With
this convention we have for the inverse v — Z-propagator the symmetric matrix [27]

D! = k* + H'y'v(kz) H'YZ(kQ)
Hryz(k2) k2 —M%+sz(k2) '

Taking the inverse we obtain

1 1

2, (k2) T k2 4T (k2
k2 +ny'y(k2) - k2—M§iHZz(/€2) + ’Y( )

Dy, =
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11,5 (k) e )

D, = ~
"7 (k% + 1Ly (K2)) (k2 = M3 + 1177(k?)) — 112 ,(K2) — k2 (K — M3)
1 1
Dyy = I — . (72)
K2 = M+ Tz (k?) — gy B Mz + Tz ()

These expressions sum correctly all the reducible diagrams. In the one-loop approximations we get Il ~ Iy .
The extra terms are higher order contributions. For precision physics at LEP1 they have to be taken into account.
With the definition that IIz includes the quadratic vZ mixing term the Z propagator is renormalized in the same
way as the W propagator.

Because the self-energy functions are quadratically divergent two subtractions (chosen on-shell)
are needed such that the renormalized self-energy function reads

dll
My () = Ty (k) = T (M) — (82 = M) ¥ (1)

+higher order terms . (73)

The way the counterterms enter in the self-energies is determined from the transverse part of the
free inverse propagator

—ig" (K> — MZ,) — —ig" Zy (k* — MZ — 6 M)
= —ig" (k* — My — M7 + 62y (K* — M) + )

The renormalization conditions then imply that the transverse part of the renormalized self-energy

Vv v —5M‘2/ + 02y (k2 — M‘z/) - , o
+ AMANVRANNN - —ig" Iy en(k*)+ longitudinal part

and its derivative vanish for k? — M2. This yields for the mass counterterm
SM = Re Ty (M) (74)

(vanishes for the photon) and for the wave-function renormalization

dIly
dk?

82y = Zy —1=—Re (M) . (75)

Since V' = Z, W are unstable particles II;, has an imaginary part
Im My (k* = ME) = My Ty #0 (76)

which determines the width I'y .

The fermion propagators are renormalized in the same way as the electron propagator in QED.
However unlike in QED the right-handed and left-handed fields are renormalized in a different way
such that

5Zf = Zuf + ZafYs5 - (77)

Finally, we have to determine the counterterm for the electric charge.
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The condition is that

et A
%\/}/\A = >\/\/\/\A + + W + counterterms
e

evaluated in the Thomson limit (k* = 0, E, — 0) gives the renormalized charge e. Thus

de 1 (% 11 7
. rq e 57 o Avee _ e o
16{7 < + e +2 7 e A 2sin Oy cos Oy M2
a II 7 . k
ae AT — - 2 — jotr AT
(20 + A2 2 sin Oy cos Oy M2 ME’) 7 om, ° }
— — iey* in the Thomson limit (78)

where A]° are vertex corrections and I,z is the v — Z mixing term. From the electromagnetic
Ward-Takahashi identity (9,j*, = 0) some of the diagrams cancel. While in pure QED

de 1 1.,
In the Standard Model we find
de 1 1 —4s%,11,2(0) 1
% _ 1 (0) — W 02— AT(0) — zpe = =I12(0) + 2K s34, L 79
T = I (0) — T AT(0) — s = I (0) + 2K sy (79)
where K' = =%, L = In Mu—év The last term is the non-abelian contribution from bosonic loops
w

in the MS scheme 3 and the Feynman-'t Hooft gauge. 4 The fermionic contributions HZ;Z(O) =0
vanish at zero momentum transfer. By the e.m. Ward-Takahashi identity we have

1 II,2(0)
4SWCW M%

A 4 2 — ~0.

With de, the mass counter-terms and the wave-function renormalization factors we have a complete
set of counter-terms which renormalize all other divergent quantities. The Feynman diagrams for
the vector boson self-energies are depicted in Fig. 6. Since the tadpoles drop out in renormalized
quantities we will not consider them. The fermion self-energies are needed for the determination
of the wave-function renormalization factors only. The diagrams for the fermion self-energies and
the electromagnetic vertex are shown in Figs. 7 and 8, respectively.

3Using dimensional regularization, the bare (ultraviolet divergent) quantities exhibit poles in e = 4 —d for d — 4
space-time dimensions. In the M S-scheme the poles are subtracted (together with some constants which accompany
the pole term) such that

2/e —y+Indr — Inp?

with p an arbitrary renormalization scale. v is the Euler constant. For physical (renormalized) quantities the
p-dependent terms must cancel.
4In the general 't Hooft gauge the vector boson propagators have the form
P'p” 1
p? —EME +ie ) p2 — ME +ie

DI (p,€) = —i (gw s (80)

Physical quantities must be ¢-independent (gauge invariance). For £ = 1 we have the ‘t Hooft-Feynman gauge
where the propagators take a particularly simple form. For £ — oo the propagator becomes purely transverse. This
is the physical (unitary) gauge, where Higgs and Faddeev-Popov ghost particles are absent.
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Figure 6b: Z self-energy diagrams

Z, !
J T Xy QM + %M” + e e

Figure 6¢: v and vZ self-energy diagrams

Figure 7: Fermion self-energy diagrams

f y f 1%
@M:%Z§>““M+ W§>~WW+ o P
f f 1%

Figure 8: Electromagnetic vertex diagrams
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4.2 y~decay and the Mass-coupling Interdependence

By the relation (27) the parameters My, My, a and G, are not independent. Here we calculate
G, from o, My and My (on-shell scheme):

o _ T 1 1
V2 MR sin? Oy 1 — Ar

where Ar # 0 due to radiative corrections. Since the QED corrections have been included in
the definition of G, already, we have to calculate the non-QED part of the p decay transition
amplitude

for k? ~ 0. Here,

T =, Iy (U= 5)] s Sy = e [y (1= 95)]

denote the muon (i) and the electron (e) charged current matrix elements where v and v are the
external spinors. The different contributions are shown in Fig. 9.

JBE TR BN SO WS

CC,box

Figure 9a: Radiative corrections to u-decay

0~ Vy 7 /¢ Uy
TG TRAT . WL W7

Figure 9b: CC vertex diagrams

NERE

Figure 9c: CC box diagrams

At the tree level we read off

G, e? T

\/§: 8M32, sin? Oy - ME, (1_%) ’

2
MZ
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Including the one-loop radiative corrections we distinguish among 1) propagator (self-energy) cor-
rections, 2) vertex corrections and 3) box contributions. We will neglect terms proportional to the
light fermion masses, since for m; < My, they are numerically insignificant. This will lead to
rather simple analytical expressions for the vertex and box contributions in the low energy limit.

Using the bare parameter relations (66-68) we get

G, et Iy (0)
—_2 = 1+ + 0 vertex 1 0 ox
\/5 8 Sin2 @WbMI%Vb M‘%V CCvert CcC.b
e . de  cos’Ow (SMF My
= 8 Sin2 @W MI%V e SiIl2 @W M% MI%V
SMZ, Ty (0)
B + 5CC,verte:c + 5CC,box
ME, M3,
yiye’
2 sin® Oy, M3, {L+A4r}

The vertex and box diagrams are depicted in Figs. 9b and 9c.

The important quantity Ar was first calculated by Sirlin [24]. We read off the formal one-loop
result from the foregoing expression. Collecting the self-energy terms in Ar,, we may write °

AT = AT(O&,Mw,Mz,mH,va)
- Arse + Arvertex-l—bo:c . (81)
and denoting s, = sin? Oy and ¢, = cos? Oy we have

« 7 — 483
A vertex+boxr — 6 W 1
Tvertea b As?, 6+ 253, e

W) (82)

which is the sum of the vertex, box and lepton wave-function contributions plus a 77 mixing term

28 HLNZ[Q, rendering the term ultraviolet-finite (in the 't Hooft-Feynman gauge) .

®Unlike the NC processes (at one-loop order), for the CC processes there is no natural separation into QED and
"weak” part in the Standard Model. The QED corrections to p decay are not ultraviolet finite and they do not
form a gauge invariant subset . This is in contrast also to the QED corrections for this process if modeled by an
effective Fermi interaction, which can be transformed into a NC form via a Fierz transformation. The only trouble
is caused by the photonic box diagram. After subtraction of the photonic four-fermion vertex correction, which has
been included by convention in the QED correction factor of (29), an ultraviolet divergent and gauge dependent
contribution R,,, as indicated in Fig. 9c, is left over which has to be included in (82).

We then have

o IL, z (0
ATvertez+box =2 ( e) + 6CC vertex + 6CC box + 2— w ’ng )
€ / vertex Sw M
where
de 4s%, — 111,7(0)
2(— = 247+ W2 — K 4sj L
( € )vertew b 2swew M% w
W, Wev, 2 1 3 SQVV
5CCvertez = (AL M+AL e):—K-2 2+— L+ — 2 CW1DCW+ — —3
’ 2 2 5%, 4
oxr 1
ScCibor = AV =-K- E (=3 +6cy + 2ciy ) Incjy + Ry
where K = HQ— L=1In AZ‘EV and R, = K - =% (2L + 1). The amplitudes A, are normalized to the Born terms.

We refer the reader to [28] for a more detailed dlscussmn.

29



If we insert the expressions for the counter-terms and rewrite the result by splitting off the self-
energies at k? = 0 as

(k%) = 11(0) + k> 1T (k?)

the self-energy contributions read:

ATse = H;(O)_H;(M%) (83>

_cos2 Ow [1Iz(0) Hw(0) N 2sin Ow IL,£(0)

sin? Oy | M2 M, cos Oy M2

, 9 9 cos O,
_HW(MW)"‘H;(MZ) s @WHWZ(MZ)

cos? O sin Oy
——— T (ME) — T, (M3 1T M2}

e {m00) — (M) + S (1)

This is a representation of Ar,. in terms of the unrenormalized gauge boson self-energy functions.
The form of this result exhibits the large (or potentially large) terms in Ar which we may write as

2
A’f’ = AO( cos @WA + Arrem (84)
sin” Oy

where

Aa = TII(0) —IT' (M3)

Ap = - 2 1
P M2 M, oS Ow M2 (85)

are the large (due to fermion loop contributions) terms and Ar,.,, is the remainder. Though the
latter term is numerically smaller by one order of magnitude it is an interesting term which includes
contributions from gauge boson self-couplings and Higgs-vector boson interactions. We are now
going to discuss the various terms in (84) in some detail.

(i) Aa
Aq« is the photon vacuum polarization contribution which comes in through
oe
2? = H/V(O)_I_"'
= II(0) — (M%) + - - - + 1L, (M3)
— Aa _|_ e

and is large due to the large change in scale going from zero momentum (Thomson limit) to the
Z-mass scale y = My. Here, by zero momentum more precisely we mean the light fermion mass
thresholds. The leading light fermion (m; < My/) contribution is given by
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= Aaleptons + AOéhadrons + AatOp : (86)

Since the top quark is heavy we cannot use the light fermion approximation for it. A very heavy
top in fact gives no contribution since

4 M2
Adtyep >~ ——— a —Z 50
315 m?

when m; > M. A serious problem is the low energy contributions of the five light quarks u,d,s,c
and b which cannot be reliably calculated using perturbative QCD. Fortunately one can evaluate

this hadronic term Aagdmm from hadronic e*e™- annihilation data by using a dispersion relation.

The relevant vacuum polarization amplitude satisfies the convergent dispersion relation

Rell! R g5 LML)
elly(s) - T e/ s—s—ze)

and using the optical theorem (unitarity) one has
ImeY(s) = e_SQUtot(€+€_ — 7" — hadrons)(s) .

In terms of the cross-section ratio

owt(eTe” — v* — hadrons)

R(s) =
5) olete” =y = ptp=)
where o(eTe™ = y* = putu~) = 47”3‘ at tree level, we finally obtain
M? o0 R(s)
Aol (M2 T . 87
ahadrons( Z) 3T € am2 88(8 . M% . Z€) ( )

Using the experimental data for R(s) up to E.,; = 40 GeV ( for larger energies 7Z mixing would
complicate the analysis) and perturbative QCD for the high energy tail we get

Al (s) = 0.0282 4 0.0009 (88)
+0.002980 - {In(s/s0) + 0.005696 - (s0/5 — 1)}
with /55 = 91.176 GeV [29)].

In the range 50 GeV < /s < 200 GeV the above fit is “exact” as compared to the error. Alterna-
tively, this result of the dispersion calculation can be reproduced by using perturbative QCD with
the effective “quark masses”

my, = 62 MeV, my = 83 MeV
mg = 215 MeV, m, = 1.5 GeV
my = 4.5 GeV
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and a QCD correction factor (1 + agepp/m) with agepp = 0.133. °

We should mention that a light fermion not only contributes to Aa but also to Ary.ep,:

a cZ . N,
Arl o~ 1— ) Z Koepind,.
Trem 477'8%/[/ ( S{Q/{/) 6 QCD Ny
This yields Avyem teptons = 0.0015 and ArE) 0~ 0.0040 .

Perturbative QCD corrections for light quarks (at some high energy scale) are taken care of by the
factor Kgcp = 1+ dgep given by

(M2 J(M2)\’
Socp = as(Mz) +1.405 <M> (89)
T ™
using [30]
A% = 20010 MeV, corresponding to a,(Mz) = 0.117 £ 0.01 . (90)

We first assume the top to be a "normal” not too heavy fermion and will discuss heavy top effects
in a second step. If there would not exist heavy unknown particles, Ar would be determined by
the following typical contributions (m; = 60 GeV, my = 100 GeV):

ATieptons =~ 0.031540.0015 = 0.0330

AThadrons =~ 0.028240.0040 = 0.0322 £ 0.0009
ATtop ~ 0.0025 (depends on my)
Arposons =~ 0.0033 (depends on my) .

The term A7yertertbor =20.0064 is included in Arpysons. For the light fermions the individual con-
tributions from A« and Ar,.,, are exhibited as a sum of two terms. The full analytic expression
for a light top would be

A( MZ 5 i
A,r,top — g_ <n_§ _ _) + 16:82 <]_ — ETW> 2 IHC%/V (91)
%% w

for my < M.

Numerically the fermionic contributions dominate. The bosonic contributions are smaller by one
order of magnitude but they are nevertheless non-negligible. The self-energy contributions are
large and depend on unknown physics, like the top mass, the Higgs mass, on 4th family fermion
masses etc. Next we consider what happens if the top is very heavy.

(i) Ap
It was observed first by Veltman [31] that fermion doublets with large mass splittings give large

non-decoupling contributions to Ap (large weak isospin breaking effects). By now we know that
the top quark is unexpectedly heavy , m; > 89 GeV, while m;, ~ 4.8 GeV is rather light.

6 Warning: Do not use these values for the quark masses for small spacelike momenta (as needed in Bhabha
scattering). These would give wrong results.
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The diagrams that give rise to leading doublet mass splitting effects are those which exhibit Wtb
(CC) transitions and are quadratically divergent. The Ztt and Zbb (NC) vertices do not mix ¢ and
b and thus do not “feel” the mass splitting. In our case (u decay) we are concerned only with the
W self-energy diagram

t 1 2

W I L LA
@ 47 453, CM‘%V_l—

b

It yields a k*-independent leading term which is (for dimensional reasons) quadratic in m;. We

thus obtain

Ap — Hz(O) _ Hw(O) - (&% mf
P="M2 ~ M2 16msh, M3

o (92)

and this large contribution gets further enhanced in Ar

2

&

w
A7n|he¢wy = _TAp_'_

Sm

by an enhancement factor ~ 3.34 for s, = 0.23 .

The remainder also contains logarithmic terms which are not negligible numerically. A heavy top
would give the contribution

2 M2 2 2 2 1 2 4 2
Apton — Y20y {3CW LER (CW )m o - 7} L (93)

W Zlnc? —
1672 s M3 M 3T R T

2
sy 3

Let us mention finally that whereas Aa will not be changed by unknown physics, Ap is sensitive
to all kinds of SU(2);, multiplets which directly couple to the gauge bosons and exhibit large
mass-splittings.

(iii) Higgs contribution

The Higgs contributions deserve our special attention. In the light fermion approximation only

the vector-boson self-energy diagrams

v A {H)

contribute. At one-loop order there is no quadratic Higgs mass dependence in Ap and in Ar. The
leading heavy Higgs contributions

Apthoss ~ —7\/§G“MV2Vﬁ{3(nm%{ 5)}

= 1672 &2, Mg, 6
. V2G , M? {11 m% 5
Aerggs ~ YIIRTW _(]n—H — — ) (mH > MW) (94>
1672 3V ME 6

are logarithmic.” This is due to the accidental global SU(2) symmetry of the Higgs sector in the
minimal Standard Model, which implies p = 1 at tree level (Veltman screening) [35]. More precisely,
the theorem states that for vanishing fermion masses quadratic terms are absent. Furthermore,
in Ap also the logarithmic term disappears in the limit of vanishing U(1)y coupling ¢’. The

"The two-loop contributions to Ap and the mass-shifts AMy, and AMy have been computed in Refs. [32] and
[33], respectively. The corresponding contribution to Ar can be obtained easily by using the relation (see Eq. (3.8)
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logarithmic term in the low energy observable Ap is a consequence of the weak isospin breaking
by hypercharge. On the other hand, in Ar the coefficient of the logarithm does not depend on ¢'.
Next we have to include the leading higher order effects.

(iv) Summation of leading higher order effects

Our one-loop calculation gave us the O(«) result

T
V2G, = oI (14 Ar).
Typically we get Ar ~ 0.07 for Mz=91 GeV, m;=60 GeV and myg=100 GeV. For the next order
term we expect a contribution of the order Ar? ~ 0.005. This would yield a shift in the prediction
of the W mass (in terms of «, G, and My) of § My, ~ 190 MeV. Since My, will be measured with
an accuracy of 0My ~ 70 MeV at LEP2, the O(«) result is insufficient for LEP experiments and
we have to think about how to include the leading higher order terms.

a. Summation of leading logarithms.

The summation of leading logarithms is governed by the renormalization group. Since, in our
case, the leading logs showed up in the QED vacuum polarization only, the leading log summation
may be understood as the solution of the renormalization group equation for the U(1)e,, coupling
constant (1 = renormalization scale)

2 U 2y _ _ (1?) 2
% aluga(:u ) - 2 - RYe Z chQf

myy<p

yielding the effective fine structure constant at scale M

(0%

— 95
a(Mz) = (95)
where
o 2 %
Ar ~ Aa ~ 3 Z NepQfIn —5
Mf<MZ f
of Ref. [29])

2 2 2 2
A, AME TW(AM AMZ, A)

M2, MZ M3,

The results are

ApPHiggs  — <_°‘ ) Lsiy miy { ~9V/3 Céz( ) — +97”f+ 1 }

4#5%[/ 8cW C%/VMz 8 4
~ 0.001 x (%)2
~ —0.001 x (3';2”7%&/)2

The result for Ar differs by the s¥, term from that given in Ref. [34]. Our result is smaller by roughly a factor
1.5 . C/y is the Clausen function and 9\/§C€2(%):O.58597681. The numerical values are given for sin? Oy = 0.23.
Since 'y > my for my >x 1.3 GeV [27] these perturbative results are sensible only for Higgs masses below 1.3
TeV. In this region the contributions are negligibly small.
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in this approximation. Thus Eq. (27) obtained from our one-loop result by the substitution

1+Ar —

1—Ar

2
represents the resummation of all powers of («In %) It is important to notice that the leading
!
log summation is scheme independent. This can be seen by writing, in leading log approximation,
1 1 1 2
Aot = —— — = — NQ*In = ; p < M,
a0 ae) a2z, N g s M

exhibiting that the r.h.s is independent of the electroweak couplings and hence of the parametriza-
tion used.

Including non-leading log terms we observe that the substitution

1 1

1+Ar:1+Aa+Arw_>1—Aa—Arw:1—Ar

is in fact correct only if Ar,, is small, which is the case only if the top is light. As a next step we
have to investigate what happens if Ap is large.

b. Summation of large Ap terms.

A careful analysis of the resummation of large Ap terms [36] shows that Eq. (27) gets modified

into
e’ 1 1
G, = + A'r?“em . 96

K \/§M€V sin® Oy { 1-Aal+ %(Ap)m } (56)

Here, (Ap);.. represents the leading irreducible contribution to the p parameter defined from the
ratio of neutral current to charged current amplitudes at low energy, calculated in Ref. [37], i.e.

Gre(0) _ 1
Gee(0) 1= (Ap)ir

It is important to note that, in contrast to Aa, which is not significantly modified by the inclusion
of two loop irreducible contributions,

(97)

3

1
47T )Aal(eg))t(ms

Aal(elg))tons - (1 +
where Aozl(;;tons is the one-loop lepton contribution to Aa, p as defined in Eq. (97), can differ sizably

from the one loop result. In fact as shown in Ref. [36], by including the two loop irreducible terms
calculated in Ref. [37], one finds

(Ap)irr = Negag[l — (20° — 19)ay + - -] (98)
with
_amig,
Ty = —_— .
872 /2

This means that low energy physics is not sensitive to the bare mass splitting (Amfc), but rather
to the effective quantity

Am3AG
(Amfc)eff:Amff{l—(zwz—w) i “}.

872 /2
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The screening effects due to the Yukawa coupling with the scalar sector, may become large for a
large mass splitting. This phenomenon, if confirmed from a closer inspection of the higher order
terms in the perturbative expansion, may have far reaching consequences (possible restoration of
decoupling) for our understanding of the Standard Model.

If we take the result of the full one loop calculation and include correctly the Aa and Ap effects,
resummed to all orders, we arrive at the final expression

M? 4 A% 1
Mg o= B2 |1-=8 A .
w 5 ( ‘I'\J pM32 (1—Aa + Afrem) ) (99)

Non-leading one-loop self-energy effects can be included by using Eq.(99) together with the replace-
ments [36,38] (combining the 1st and 3rd line and the 2nd and 4th line of Eq. (83), respectively):

Aa = Ae =TI (0) — My (M) + E—EVV I, (M2)

(M%) _ Iy (M) i S_WH“/Z(M%> +11,2(0)

Ap — Ap=
P P=z M2 ey M2 ’

(100)

where II includes vZ mixing terms as given in Eq. (71). Notice that Ae must be calculated in
terms of a and the masses, while Ap must be calculated in terms of G, and the masses. We have
checked that the above substitution reproduces correctly all self-energy terms up to O(a?) . Such a
resummation could make sense for the fermion contributions, which form a gauge invariant subset.
However, since terms like the irreducible contribution proportional to 2+/2G,m? In(m?/M2) are
unknown, non-leading terms and the vertex and box corrections ( contributing to Eq.(27) ) should
be added perturbatively, i.e. included in Ar,q,,.

(v) Applications

Once Ar is given the W mass can be predicted by using the values of o, G,, and My from LEP1.
According to Egs. (27) and (28) we obtain

M2 4A2 1
M2 = —Z(1 101
W 2 (+J Mgl—Ar) (101)
and, equivalently,
1 4A2 1
<2 _ - . _—0
sin“ Oy = 5 (1 Jl 2T Ar ). (102)
with
Ay = (—L )12 = 37.2802(3) GeV. (103)
V2G,

Explicit expressions for the various quantities which have been mentioned in this section can be
found in Refs. [24,28]. Numerical results are given in Tab. 5. In Fig. 10 the m;-dependence of Ar
is shown for various Higgs masses. The W mass measurement is equivalent to a determination of

T 1

Ar=1-— 5 5
V26, M (1 - 3)

. (104)

Using the experimental values (30-32) for My and My, Ar is determined fairly well and since Ar
is strongly dependent on the top mass we can use the results to find a direct constraint on the
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top mass. Within one standard deviation we read off from Fig. 10 (the second uncertainty in m;
comes from the change of my)

Ar =0.04675018 < my = 13675072 GeV (105)
assuming my < 1 TeV. We notice that the direct lower limit m; > 89 GeV is stronger than the

indirect one obtained here.

In future one expects to be able to achieve a precision of My, = 70 MeV at LEP2. An accuracy
OMy = 100 MeV possibly may be achieved by combining the hadron collider results from CDF
and DO by the end of 1995 with an integrated luminosity of about 70pb=! [4]. This corresponds to
an error in Ar of dAr = 0.0056, and using ‘gmﬂtf = —%‘gﬁ—: this would determine m; to an accuracy
better than om; = 10 GeV. Of course we are waiting for the direct discovery of the top which

should be within reach in the next few years at the Tevatron.

0.104" i
| T U4 o (My)=0. 117 + 0.01 i
A CDF .

0.084 . M, = 91.176 + 0.021 GeV
1~ Hpp i
0.064 ™~ ~. .
174 T - L

N 0
0.04 1 SN -
i N L

[ N =
< 0.02 N i
4 N . L
1 AN
0.00 N .
N\,
_ NN .
-0.02- —-—  my= 1000 GeV NN
1 — my, = 100 GeV \\‘\-
~0.041 - = = my= 50 GeV N
_ \ F
100 150 200 250 300
m, ( GeV )

Figure 10: Ar as a function of the top mass for various mpg

Table 5. Prediction of My, and related parameters (M; = 91.176 GeV, a, = 0.117).

Masses in GeV. sin? O,, sin? ©, and sin? © will be considered below.
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my | myg | My Ar sin? Oy | sin? 0O, | sin®?©, | sin’?©

90 | 100 | 79.928 | 0.06032 | 0.2315 | 0.2334 | 0.2335 | 0.2326

110 | 100 | 80.037 | 0.05430 | 0.2294 | 0.2329 | 0.2333 | 0.2322

130 50 | 81.182 | 0.04607 | 0.2266 | 0.2321 | 0.2328 | 0.2313
130 | 100 | 80.151 | 0.04786 | 0.2272 | 0.2324 | 0.2330 | 0.2316
130 | 1000 | 80.002 | 0.05623 | 0.2301 | 0.2334 | 0.2341 | 0.2327

150 | 100 | 80.275 | 0.04068 | 0.2248 | 0.2318 | 0.2328 | 0.2310
200 | 100 | 80.642 | 0.01840 | 0.2177 | 0.2299 | 0.2321 | 0.2292
230 | 100 | 80.905 | 0.00133 | 0.2126 | 0.2286 | 0.2315 | 0.2278

4.3 Effective Couplings at the Z Resonance

In this section, for simplicity, we concentrate on LEP1 observables directly related to the NC pro-
cess eTe” — ff near the Z peak. Radiative corrections for this process have been calculated by
many groups [39,40]. The diagrams for the one-loop corrections are depicted in Figure 11.

G e e e 1T

NC,box

Figure 11a: Radiative corrections to ete™ — ff

Figure 11b: NC vertex diagrams
ot 7 Z Z
— f: *
e I I::[ I 1
NC.box 4 4
+ +
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Figure 11c: NC box diagrams

Because of the factorization of the non-QED corrections at the resonance, the weak corrections

f 7 ¥
f >@w\/\m = >\/\/\M + + >VW@A~» + counter terms
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can be cast into an overall renormalization of the Zf f vertex
(V2G,)2Mzy* (—2Q; sin® Ow + (1 — 75)Tsp)
by p}/ ® and a renormalization of sin® Oy in the NC vector-coupling [41]):
Gy = psGy (106)
sin? @y — Kf sin? Oy,

where p; =1+ Apge + Apfaerter and K = 1+ Akge + Ak pertez-> In terms of the corrections vy
and day of the vector and axial vector couplings we have
Ap _ 2(5& Akr — CLféUf — vféaf _ CLf(S’Uf —vféaf
! af f CLf(Uf —CLf) —QQfaf SiIl2 @W .

The potentially large self-energy (se) contributions are universal. The analogues of Eq. (84) for
Ap and Ak read

Apse = Aﬁ = AP + Apse rem (108)
2
Ak = AR = WAp + Asorem = LAp
sty i

with Ap and Ap defined in Egs. (85) and (100), respectively. The self-energy terms are given by

Mo - T () angy (109)

Apse,rem = AZ:

The vertex contributions are (if f # b) relatively small (but not negligible) and flavor dependent.
We may define effective sin® ©’s by

sin® O = kysin® Oy = i3 (110)

8The explicit expressions for the light fermion vertex corrections are [42]

V2G, M2

Apf,vertez = T;:_z {2 f + af AQ(S Mz)
_46%/[/(1 - 2(1 - |Qf|)SW)A2(Sa MW) + 246?}[]1\3(57 MW)} - ATverteerbox
V2G, M2

Aﬁf,'uertem 167;2Z {_(1 - 4|Qf|812/V)(1 - 2|Qf|812/V)A2(87 MZ)

+2¢y (1 = 2(1 — [Qy|)siy) Az (s, Mw) — 12¢iy, As(s, Mw) } (107)

where Aryertestbos 1S given by Eq. (82) and comes in through the o — G, replacement used here. The functions
A;(s, M) are given (y = M?/s with M = Mz or My, s > 0)

Ao(s, M) = —; — 2y — (2y + 3) In(y)
o1 1y [ln@) (1Y) sm—?]

1
—im [3+2y— 2(y+1)%In (ﬂﬂ
y
2y
3+
5 (y+2) t L i
—_ = arctan —— .
3Y\ iy —1

where the formula for Aj is valid for s < 4M? only. The Spence function is defined by Sp(z) = — 01 2 In(1 — at).
For f=b the expressions are more complicated and may be found in Ref. [43].

Ag(S,M) =

| ot
Wl N

1
(2y + 1) /4y — 1 arctan NZTES
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where

52 =sin’0 = % (1— /1 —442/M2 ) =0.2122(1) (111)

is the lowest order sin® © in terms of «, G, and Mz. We have

. 2 2
Ry =Ry + 2 _ §2AT = 2 _ §2A7”f (112)
and, generalizing Eq. (104),
V2G M} cos® O sin? O = a=arg) i Ary = Ar+ = AV (113)
Using Eqgs. (84) and (107) we obtain
Ary=Aa—Ap+ Arfrem - (114)
and we may calculate
. . 1 4A3 1
Sln2@f = /ifSlIlz@W:i(l—\Jl—@W) (115)

which compares to Eq. (102).

Comparing Eq. (114) with Eq. (84), we notice that the LEP1 versions Ar; and sin? © of Ar and
sin? Oy (obtained from the W-mass measurement) are by a factor cZ,/s¥, ~ 3.3 less sensitive to
heavy particle effects (see Fig. 14 below). But in both cases it is the same quantity , namely Ap,
which is measured.

Figures 14 and 15 exhibit the different behavior as a function of m;.

Also, one finds that the sensitive to a heavy Higgs is lower by a factor (1 + 9s%,)/(11c},) ~ 2.8.
This does not mean that LEP1 experiments are less suitable to get important information on
heavy physics, however. Thanks to the higher statistics of LEP1 experiments, LEP1 observables
are measured with higher precision. Furthermore, the relative sensitivity to the Higgs is higher at
LEP1, a welcome fact, since the Higgs remains “the big unknown” in the Standard Model.

From the measured effective sin? ©;’s we may evaluate

AFEP _ | T 1

B : 116
' \/§GMM% sin? O™ cos? QP (116)

40



0.2401 - sin'e, T
E— Sim2®e
- Sin2®u
~ 0.2 sin®y |
= |
(]
)
(e}
S ]
i 0.2304 -
- ]
E
&L
-~ ]
‘n 0.2254 L
0.2204 ' -
100 150 200 250 300
m, ( GeV )
Figure 14: Flavor dependence of effective sin? ©’s.
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Figure 15: Flavor dependence of effective p’s.

The values for sin? @jfp can be obtained, using the tree level formulae, from the on-resonance
asymmetries which have been corrected for QED effects, experimental cuts and detector efficiencies.
For example, from the experimental left-right asymmetry we get

Apr —14/1 - A
SiIl2 @z:cp = SiIl2 @LR = LA 4ALR LR’ (117)

which confronts with the theoretical prediction Eq. (115). The last equation may also be used to
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determine sin? ©? from the forward-backward asymmetry A% if we identify

4 _
App = ,/gA;a;“ .

The weak mixing parameter most precisely measured at LEP is
sin? ©,(M32) = 0.2302 £ 0.0025 < m; = 19675572 GeV . (118)

We see that the m;-bound is weaker than the one obtained from the hadron collider results. The
smaller error cannot yet compensate for the weaker m;-dependence of sin? ©, in comparison to
sin? Oy. While this measurement does not improve the upper limit, it does improve the lower
limit to m; > 104 GeV. LEP has dramatically improved the precision of the leptonic Z couplings

Particle Data 90 [17] | LEP 90 [1]
gy = -0.045 £ 0.022 | -0.037 £ 0.005
g9 = -0.513 £ 0.025 | -0.501 £ 0.003

Since ¢4 = —/pe/2 and ¢ /g4 =1 —4 (1 + AR.) § = 1 — 4sin® ©, we obtain

Ap. = 0.00240.006 , A&, =0.12640.048 , sin?©O, = 0.2315 & 0.0027 .

Due to virtual b-t transitions in the Zbb vertex
7 40 W
%78 t

one finds large vertex corrections from a heavy top quark, given by [41]

V2G M2 m? 1 1 m?
AR pertes W ot 4 Z(164+ —)In—t +--- 119
Fbvert 1672 g, T3t ) g (119)
Apb,vertem = - 2A’ib,vertem .

These corrections lead to a much weaker top mass dependence of quantities (partial width, asym-
metries) associated with bb final states.

Thus, in comparison with other channels the production of bb is particularly interesting since
.2 .2 =2
s @b — Sin @e = S (A/{b,verte:c - A/{e,vertex)
9?4/951 = 1 + (Apb,vertex - Ape,vertew)

measure the large top contribution of the Zbb-vertex. They are completely independent of Higgs
and other heavy particle effects and hence they are ideal heavy-top-mass-meters. As an example, for
m; = 200 GeV we obtain sin? ©, —sin? ©,= 0.0020 and g% /g4= 0.9821. For sin? ©, an experimental
accuracy of 0.0009 is supposed to be achievable.

We may define a flavor independent effective sin? © by

sin@ = (1 + Akg)sin® Oy (120)
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and include the small vertex corrections in a second step
sin®©; = (14 AKfperter) Sin” © (121)

up to negligible higher order terms. The flavor independent auxiliary quantity sin?© is used in
Ref. [40] and is very similar to s? introduced in Ref. [44]. The “barred” (or “starred”)-quantities
are obtained by ignoring (small) corrections different from the vector boson self-energies.

The leading heavy top and heavy Higgs dependence is given by

V2G,, M2 { m?2 2 m2
AFP = pW 3t In—L ... (122)
1672 MZ U3, M2
apor _ VIGME [ sk mi o l6ch(chy —sh) =1 mP
b 1672 &, M3, 3¢k, M3,
and
. V2G M2 {1+952 m2, 5
AFT99s ~ W Win -2 - 2) (123)
1672 3¢k, MZ, 6

respectively. Except from extra top contributions in the case of f = b, all heavy particle effects
are universal, i.e. Arf%, = AF' and Arj/*9" = ApHioss,

What is the proper resummation of the large higher terms in case Ap is large? Using Eqgs. (107),
(97) and (99) we have

2
9 cos” O 9
O = (1+——Ap+--- )
sin” O <+Sin2@w p+ )sm w
M3
— 1w
oM

where the ellipses stand for the small remainder terms. As a result we obtain

11 (
1—-Ar;  1-Aa

1- (Ap)zrr) + Aff’f,r’em (124)

for the proper resummation of the large terms in Egs. (113) and (115). This leads to the important
relation

ﬁGuﬁMg cos? O sin? O = ma(l + AT pertes) (125)
where
_ 1 1
p = — ~
1-Ap 1-Ap
a = — - (126)

1—Ae:1—A0z

with Ap and Ae given in Egs. (108) and (100), respectively. Ignoring vertex corrections we obtain
the universal relation

V2G iM% cos®> O sin® O = 1a . (127)
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For completeness we mention that sin? ©, measured at the Z peak is the high energy analogue of
sin? ©,,. measured in low momentum transfer v,e — scattering. In fact, the two versions of sin? ©
are related in a way which is practically independent of unknown effects ( they differ by vZ mizing
and v, charge radius contributions only, which, by accident, largely cancel each other numerically
). Formally we have

SiIl2 @e - (1 + Ase _I' Auue,verte:c—i-box _I' A/{e,vertex) SiIl2 @I/ME (128)
where
cos Oy dIl,
A, = I, (M%) — —2=(0 129
o {0 - o (129)
= Aa— AOég
« 2 ]\/[2 24ct, — 14c%, + 9
AI/ e,vertex+boxr In —- 1 W L4
wesvertesth 4rsy, {3 < m2 - ) 4c}, }

2

and Akeperter i the same as in Eq. (107). The shift Aay in the SU(2)r coupling ap = ¥ is
analogous to A« in Eq. (85)

Aay = II4 (0) — 5 (M3) (130)

M2 5
= —21|Ql‘(ln— - 3 ) + Aa 2hadr0ns (131>

where the sum extends over the light leptons and [29]

AL sirons (5) = 0.0587 +0.0018 (132)
+0.006184 - {In(s/s0) + 0.005513 - (s/5 — 1)}

is the hadronic contribution of the 5 known light quarks u,d,s,c,b (y/so = 91.176 GeV).
The proper summation of the higher order effects in this case reads

I—AOQ

.2 .
S @6_{1—Aa

+ Auue,vertem—l—box + Afie,vertem} SiIl2 @V‘Le (133>
The ratio sin? Ou,e/ sin? ©, is shown in Fig. 4 as a function of m,. The value of this ratio is close
to 1.002. This relation provides a sort of “model independent” constraint for the Standard Model
. The CHARM II value for 0.240 £ 0.012 [21] is in agreement with the SM. The precise definition
of the low energy p-parameter is (to linear order)

. Gel0)
Vue GCC(O)

=1+ AP + Apvertex-‘rbo:c (134)

with Ap given in Eq. (85) and

fGM?{

Apvertex-‘rbo:c - 1672

24cfy, — 44, + 15 — 2 W(4CW—|—3)IHCW} :
Sw

Similar to the asymmetries, the corrected partial widths I'y ;7 \[C;’;r Z(v; + a})NegKoep (14
ff ~ 127 FeFf

dgep) and the peak cross-sections o/, =~ 375! are given by the Born formulae using the
zZ V4

effective parameters Eq. (106). The uncertainty in «y implies an uncertainty of 12 MeV in I'z 4.
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The QED-correction including real photon emission is given by dgrp = %Q?‘ In Tab. 6 some
values are given for the widths and peak cross-sections. The full QCD corrections will be discussed
in subsection 4.5 below.

Table 6. Z widths and peak cross-sections for My = 91.176 GeV and o, = 0.117.
Masses are given in GeV, widths in MeV and cross sections in nb.

k peak
my | myg | Uz | Ty | Te [ Ling | Te | Ty | Rraa | 00° | Ohad

90 | 100 | 2482 | 1733 | 83.4 | 499 | 296 | 378 | 20.787 | 1.9927 | 41.423

110 | 100 | 2485 | 1735 | 83.5 | 499 | 296 | 378 | 20.782 | 1.9937 | 41.432

130 50 | 2490 | 1739 | 83.7 | 500 | 297 | 378 | 20.780 | 1.9944 | 41.443
130 | 100 | 2489 | 1738 | 83.7 | 500 | 297 | 377 | 20.775 | 1.9949 | 41.444
130 | 1000 | 2481 | 1732 | 83.5 | 499 | 296 | 376 | 20.755 | 1.9971 | 41.449

150 | 100 | 2494 | 1741 | 83.9 | 501 | 298 | 377 | 20.767 | 1.9963 | 41.456
200 | 100 | 2508 | 1751 | 84.4 | 504 | 301 | 375 | 20.745 | 2.0002 | 41.494
230 | 100 | 2519 | 1759 | 84.9 | 506 | 303 | 375 | 20.731 | 2.0028 | 41.521

4.4 Results from LEP at the Z Resonance

The results from LEP based on 600,000 Z decays (presented at the Aspen Conference January
1991) are collected in Tab. 5.

The central values are given for m; = 136 GeV and my = 100 GeV. The uncertainties for the
SM predictions include variations of the parameters within the one standard deviation bounds
89 GeV < m; < 204 GeV, from UA2 and CDF data, and 50 GeV < my < 1 TeV. More
precisely, the allowed range for m; depends on mpy. Since, in the range of interest, all quantities
are monotonic functions of my and m; we may inspect the extremal cases simply: For my = 50
GeV the 1o range for my is (74,180) GeV or (89,180) GeV if we take into account the direct bound
(26). For my =1 TeV we get (104,204) GeV. The bounds given in Tab. 5 are then the maximum
or minimum values from the two extremal cases. Taking an upper bound 1 TeV for the Higgs mass
is of course a theoretical prejudice.

The mass and the total width of the Z are determined from the line-shape. The separate analyse
of the visible channels ete™ — hadrons and ete™ — (F¢~ lead to ['yuq and I'y (¢ = e, u,7),
respectively. Using these and the total Z-width

FZ = 1—Whad +3 FZ + Finvisible; Finvisible = NI/(FV)SM

in terms of the hadronic, leptonic and neutrinic contributions, I';,isitie can be determined. N, is
then extracted as the effective number of SM neutrinos. The most important result established by
the LEP experiments so far is that N, = 2.95 + 0.05 and hence no additional light (m, ~45GeV")
neutrino (sneutrino, Majoron etc.) exists [1]. This rules out the existence of further family replicas
of the known type with (within experimental limits) massless neutrinos.

Table 7. LEP results on the Z peak
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ALEPH | DELPHI | L3 OPAL | LEP SM | sin’©
7 decays | 195,000 | 130,000 | 125,000 | 184,000 | 634,000
My, 91.182 | 91.175 | 91.180 | 91.160 | 91.174 0.2315
(GeV) | £0.009 | 40.010 | £0.010 | £0.009 | £0.005 0018
4+0.020 | 40.020 | £0.020 | £0.020 | +0.020
T, 2488 2454 2500 | 2497 | 2487 | 2490 | 0.2322
(MeV) +17 +21 +17 +17 +9 +22 | 00T
ohear 41.76 4198 | 4092 | 41.23 | 4146 | 41.45 | 0.2313
(nb) +0.39 | 40.63 | +0.47 | +£047 | +0.29 | £0.12
T had 1756 1718 1739 | 1747 | 1744 | 1739 | 0.2314
(MeV) +15 422 +19 +19 +10 +18 | 4.0022
T, 83.3 83.4 83.3 83.4 83.3 83.7 | 0.2326
(MeV) | =+0.7 +1.0 +0.8 | +0.7 | +04 | +05 | +.0021
Rhad 21.07 21.61 20.88 | 20.94 | 2094 | 20.77
+0.19 | 40.33 | +0.28 | +0.24 | +0.12 | £0.12
Cine 481 436 511 499 493 500
(MeV) +14 +21 +18 +17 +9 +3
N, 2.90 2.93 3.08 2.99 2.96 3
+.08 +.13 +.10 | +£.10 | +.06
AT 0.024 0.008 | 0.024 | 0.007 | 0.016 | 0.0151 | 0.2313
+.008 | +.013 | +.015 | +£.008 | +.005 | £.004 | +.0027
(ve/ac)” | 0.0082 | 0.0028 | 0.0080 | 0.0023 | 0.0054 | 0.0051 | 0.2315
+.0026 | 4.0044 | 4+.0048 | £.0028 | +.0016 | £.0013 | £.0027
Ab 0.141 0.130 0.135 | 0.0962 | 0.2241
+.044 +.043 +.031 | g | £.0077

Of particular interest is the observable Rpaq = I'paa/T¢ which is almost independent of my,, due to
an accidental cancellation of the m;-dependence between the Zbb-vertex and the self-energies. A
deviation from the SM would be a direct signal for non-standard physics. The experimental value
20.92 + 0.13 is slightly higher than the SM prediction 20.77 4+ 0.12. Also the hadronic peak cross-
section UZZ‘Zlk is weakly dependent on m; only. The experimental value is in perfect agreement with
the prediction. Before more stringent tests are possible one has to pin down further the allowed
mass ranges for the top and the Higgs. We do not expect that the errors on My and a4 can be
substantially improved further.
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Figure 16: Results for I',,q, I and Rpqq.
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Some major results obtained in the first year of LEP (~ 600 000 Z’s) are shown together with
theoretical predictions in Figures 16 and 17. All Figures show the data together with the theoretical
prediction as a function of the top mass for my= 50, 100 and 1000 GeV. An uncertainty das =
£0.01 in the strong interaction coupling constant is shown as an inner error band whereas the outer
error band shows the uncertainty in the prediction due to the experimental error M, = 4+0.021
in the Z-mass. The agreement between the experimental numbers and the theoretical predictions
is impressive.

4.5 QCD Corrections

We distinguish two different kinds of QCD corrections:

i) gluonic corrections of quark loops contributing to parameter shifts.

ii) gluonic corrections to quark final states

We first discuss the QCD corrections to quark loops. Typically, we have to distinguish between
two cases, the light quark contributions to A« and the heavy quark contributions to Ap. In both
cases there are uncertainties because strong interaction effects are not well under control by theory.
The problems are due to:

(i) the ill-defined QCD parameters. The scale of «; and the definition and scale of quark masses
to be used in the calculation of a particular quantity are quite ambiguous in many cases.

(ii) the bad convergence and/or breakdown of perturbative QCD. In particular at low ¢* and in the
resonance regions non-perturbative effects that are theoretically poorly known are non-negligible.

The theoretical problems with the hadronic contributions of the 5 known light quarks to Aa can
be circumvented by evaluating the dispersion integral (87) using the experimental e*e™-data as
input (which include all orders in perturbation theory). The hadronic contribution of the 5 known
light quarks u,d,s,c,b obtained in this way have been given in Egs. (88) and (132). The errors
d(A)pag = £0.0009 and §(Aas)nag = £0.0018 are dominated by the large experimental errors
in the continuum contributions to o, (eT e~ — v* — hadrons) below the T threshold, and can
be improved only by more precise measurements of hadron production in e*e™-annihilation in the
corresponding low energy region. This uncertainty leads to an error of My, = 17 MeV in the
W-mass prediction and §sin® © = 0.0003 in the prediction of the weak mixing parameters.

For the high energy tail we have to apply perturbation theory. For the light quarks the perturbative
QCD corrections amount to the correction factor Kqcp = 1+ dqep given in Egs. (89) and (90).
At the Z mass scale dgcp >~ 0.039 for the u,d,s and ¢ quarks, whereas for the b quark dgcp ~ 0.044
as we shall see below.

The contribution to Ap from quark doublets with large mass splittings exhibits large QCD cor-
rections in the weak current quark loops. The relevant exact analytic expressions for the vacuum
polarization amplitudes have been given in Ref. [45]. The effect for a heavy top was first calculated
in Ref. [46]. One finds

VG,

Ap = 62 3meQCD + - (135)
with
2 2 6 S S
Koep =1— 22 0% 198602 (136)
9 = s

for asymptotically large m;, which is a large correction. Here, m; is assumed to be the on-shell
quark mass. We shall use below renormalization group (RG) improved perturbation theory using

48



( GeV )

r tot

( GeV )

r inv

(nb )

peak

O had

A Delphi 0 (M)=0.117 + 0.01
O L3 M M, = 91.176 + 0.021 GeV

S

i m - 1000 GeV
2 460' — = 100 GeV
T — my- 50 GeV
100 150 200 250 300
0.560- X Aleph N o« (M,)-0.117 + 0.01
- A Delphi 7 M, - 91.176 + 0.021 GeV
A
0.5401 L3
7 T O Opal
0.520- -~
4 _ o
0.500-
- Zx' -1~ -"-"°-"-"-"°-"°-T-°-°-°-T-T-°-T-T-T-T-T"TT-"TTTTTTTsssss="=9
0.480-% -
0.4604 m , = 1000 GeV
7 — m = 100 GeV
0.4404 — my= 50 GeV
100 150 200 250 300
m, ( GeV )
43.50 —_——
] X Aleph m = 1000 GeV
00: A Delphi — m = 100 GeV
b3 ] OL3 — my= 50 Gev
] O Opal
42.50 1
42.00
E 5 X LT
41.507  hromr I
] VIV
£1.007 il I 0, (M,)=0. 117 + 0.0
] 7 M, = 91.176 + 0.021 GeV
4050 T T T T T T T T T T T T T T T T T T
100 150 200 250 300
m, (GeV)

Figure 17: Results for I'z, I'y,, and aﬁggk.
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the M S scheme. The M S running mass m;(u) at scale p is related to the on-shell mass at threshold
by [47]

4 arg(4m?
m; = ma(ms) (1 + —M> . (137)
3
Thus using a running top quark mass the leading top contribution changes to
V2G,
Ap = 5 3mt(mt) KQCD + - (138)
167
with
_ 2712 — 18 a, s
Roop=1- 2 "20% 101932 (139)
9 s s

and yields a correction which is smaller by more than a factor 10. Recently the numerically
important subleading terms have also been worked out [48,49]. At first, the corrections obtained
are not well-determined numerically because it is not so evident which scale should be chosen for
as. Also finite corrections to the quark mass can change the result drastically as we have illustrated
with the above example (ambiguity in the definition of m;). Again, the problem can be controlled
better by using the representation

V3G,

Aptop(o) — 37T2

Re /  dsR(s) (140)
4mg

as a dispersion integral [29]. For the imaginary part R,(s) the perturbative result, known to two-
loop [50], can be used away from the resonance regions (since /s > 2m; ~ 10 GeV). If one evaluates
the dispersion integral numerically, one can use running parameters for the parametrization of the
absorptive part. This is precisely what one does in parametrizing the e™e™ annihilation data for
R(s) where s-dependent parameters at scale /s are used. This we do for the other currents in
the same way. The resonance regions can be treated using semi-phenomenological quark potential
models. Using this approach, the QCD corrected heavy top contribution to Ar has been calculated
in Ref. [51]. °

Here we adapt the analytic approach of Refs. [45,46,48,49] and closely follow Ref. [49]. We will
use however running parameters as in Ref. [29], for example.

We denote by J, ;? the hadronic part of the electroweak currents which couple to the gauge bosons
A =r~,Z or W. Expressed in terms of the vector and axial-vector quark currents
VI = qy,q2 and AT = q17,7502 (141)

we have
” 2 1-
JH = Z (guﬂﬂuui - gdﬂﬂudz)

J7 = J)—2sin* Oy J)
1o B
Jio= = Z(Uz’% (1 —=5) wi — diyp (1 —5) di )

— J1 + ZJ2
JM = \/— § uz’)/u

(142)

9The authors of Ref. [51] use a different scale for the running coupling and treat masses as fixed on-shell
quantities.

50



where u; and d; stand for the upper and lower components of the weak isodoublets, respectively (i
is the family index). The self-energy functions are then given by

MAf(a) = igags [ d'ze™ <O|TJ (2) I (0)[0 >

- (g,w —~ qg‘j) ' (¢%) + %HS‘B (¢%) (143)

with g, = e, gz = g/(2cosOy) and gw = g/v2. In the following we need the transverse
amplitudes TI; (¢?) only, which we simply denote by II (¢*). Furthermore, we introduce the
subtracted amplitudes IT" (¢%) by

IT (s) =11 (0) + sII' (s) (144)
and use II (0) = 0 for the flavor diagonal vector currents. '°

According to Egs. (143) and (142) the vector boson self-energies are determined by QCD vac-
uum polarization functions IIG(s,m;) and II{/G (s, m1,m2) of the vector (V) and axial-vector (A)
currents Eq. (141). Explicitly, we have

nm = ezQ?H{yc (s, m;)

% — ﬁ|@.|_623W
4CW ‘

cw

@?) 1Y€ (s,m)

2
g
7z = <@> ((1 = 853 @il + 1653, Q) IV (5,m4) + TN (s5,m,))

2
HWW = <g§> (H\C/C (87 m17m2> + ch (87 my, mz)) : (145>

For the charged currents we restrict ourselves to consider the approximation m;, = 0. In this case
HA (Svmtu O) = HV (Svmtu O) = HW (87 M, 0) :

The contributions we are considering correspond to the diagrams depicted in Fig. 18.

Figure 18: Gluonic corrections to quark loops.

Before we discuss the QCD corrections in detail, let us summarize the representations of the
parameter renormalizations in terms of the self-energy contributions. The various quantities of
interest are the following:

A= Sp T e
A W Cw A
. Hz(M%) HW(MI%V) Sw Hyz(M%) + nyz(O) 8%/‘/

A - w —Ap— WA 4 A
p M2 ML o M2 P 1t e
) My(M2) T,(0) (dy), .,

Aj = A - - MZ) = Ap+ A
P P 1z g ) M) = B0t A

'9The canonical divergences of the currents Eq. (141) are 9V, 1% =i (m1 — my) qigz and 9" AL =i (my +
m2) 17542
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Mw (M) Tw(0)  (dllw
c i c
Ar = TAp= TWAp—A1+TWA2
Sw Sw Sw
Ae = T0,(0) — Iy (MZ) + CZH’ (M2) = Aa + A; + A,
~ Cw II Z(M2) II Z(O) dIl A
A = X Y zZ) - _ 2l = Aa — A 14
where
Ap = g*(Mss(0) — 1:(0)) /M3,
A g* (U, (M7) — Mgy (M7)
Dy = g (Ty(M3) — T (M3) (147)
Aa e? (11, (0) - H L(M2))
Aay = g* (ITy,(0) — IT4 (M2))
in terms of vacuum matrix elements of the currents Eq. (142). Using this notation we have, for
example,
i i
Ar = Ae—Am:Aa—TWAp—i—QAl—i—(l—TW) A, (148)
Sw Sw
Ar =

1
Ae—AﬁzAa—Ap—i—TAl
Cw

The heavy quark QCD corrections to the parameter shifts are now determined by the real parts
of the self-energy functions Eq. (145). For the top-bottom doublet the contributions are given by

{myeo,

mt) + ch

(O, mb)

+ITYC(0,my) + TN (0, my) — ATIGE (0, my, ) |

Re {H/\J/VC(Mgv mz) - ch(ov mz)}
e {INC (M2, my) — TYC(0,m;) }
{Hg\IC(M%’ m,) - HZXVC(M%’ m,) - (2 - 4|Qi|)H/\J/VC(M%> mz)}

—Re {T)C(MZ, my) + T1YC (M, my)

HITYC (M, my) + TIYC (M, my) — ATGEC (Mg, me, ) }

(I (M2, my) — TIC (M, )

+(1 = 883 |Qil + 1653, Q7) (THNC (M3, ma) — T (M, ma) ) |

g2
Ap = 4M2 4—Re
Ao’ = —efo%
m
Aot = — 2@%
2 m
. g as
Al = =—Re
! 16
Agb) _ g O
16 7
2
' g
Al = % Re
i 16¢3, ™
A — QZ%R

The explicit expressions are given in the Appendix. If applied to the process ete™

{H%C/C(MI%I/" my, mb) - HI?VC(MI%Va my, mb)}

(149)

— ff away

from the resonance M2 should be replaced by s in these expressions.
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We are considering now the QCD corrections to the v, Z — ¢q final states [52]. They are given
by the imaginary parts of the same amplitudes. At the Z-peak this is incorporated in the QCD
corrections to the hadronic partial widths. For the light flavors this is determined to O(a?) by
docp Eq. (89). For the b flavor mass corrections have to be included. In addition the O(a?)
term is modified by a singlet contribution to the axial amplitude which is due to large weak
isospin breaking by the large mass difference in the tb-doublet [53]. This correction is given by the
imaginary part of the three-loop diagram of Figure 19.

v

Figure 19: Diagram giving a singlet contribution to the weak axial currents

Analytically the result is given by
- 1
Ol 4(bb) = —g(as/w)2l((MZ/2mt)2)F0A (150)
where "4 is the axial contribution to quark parton Z decay width. The function I(z), for 2m; >

My and m; = 0, is given by

1 15
I(ZL’) = —6L——Q0 +Z

+y/1/z — 1{=2Cl(p) + o(—2L + 3)

+ (1/2)[Clap) + so(L 1)}

+(1/2)(* +1)

+(1/2)[Ct(p) + £Ch(e) = ((3)] (151)

where ¢ = 2arcsiny/z and L = In( f) and Cly3 are Clausen integrals [54]. For our purpose a
perfect approximation is [53]

I(x) ~9.250 — 1.037z — 0.6322% — 6L (152)

For the Z — bb width we get

302«
Ty = 3py Loy (vy Koep,vs + ay Kgop,a) (1 + %; ) (153)
with
Kocpys = 1+ %(1 + 3y) + 1.405(%)2
3 3 «
K, = 1-= 1— Zqp(1+41 1.405 — T —2)2
QCD,Ab 5 Y + 2 ( be( + H(MZ)) + (1.405 — I(z4)/3)( 7T)

Here y, = 4m?/M% and z, = MZ/4m?.

We finally consider the forward-backward asymmetry Apg = o2 . In lowest order it is given
by

AFB(S) = (154)



F aQr V2G, M2
A];J;g(s) - =1 5% K ZchRexaeafyf (155)
GiM%
21s

and oy(s) the total cross-section. QCD corrections can be obtained if we replace %ch — 1 in the
QED final state corrections. If no cuts are applied Agpg(s) remains uncorrected in the zero mass

approximation [52]. If mass effects are taken into account the correction may be approximated by
[55]

+

ch‘X|2UeUfaeaf Yr

A
AFB(S) — AFB(S) (1 + f?) (156)
where
drmy 8z (9 w1 5 3 5
=——4+—|=+—=+=( ——Inzx—-1In2 1
f 3\/§+3<2+8+8(nx) 5 ne 211) (157)
with z = m?c /s. Together with the correction (14 =) in the total cross section one obtains
Qs 4m my
A A 1-—(1-=——= 1
p(s) = Ara(s) (1- 2 (1= F70) (158)

to a good approximation.

So far we have treated the quark masses as on-shell masses in the same way as leptons. Due to
the convergence problems with perturbative QCD we have to use renormalization group improved
(leading log resummed) perturbation theory. As usual, we use the convenient M S-scheme. For
the finite dimensionless absorptive parts R,(s) in the dispersion integrals the solution of the RG
equation reads

R, (m?%,go> =R, (mzs(m,g(u)>; p=+/s (159)

if sp is a data point where gy = g(po) and mo = m(uo) have been determined. ¢(u) is the
running coupling constant and m(u) is the running mass in the M S scheme. To order O(a?), with
as = g*/4m, we have

4 _ & 47 51
Boas() B3 8 <ﬁ "

)=Mﬁm% (160)

oas (1) 5_3

where the effective RG invariant scale A = A% (< pp) is defined in terms of the reference
coupling as(p0) at scale jig = /5o. The iterative solution of Eq. (159) in terms of inverse powers
of L =1In(p?/A?) (u < A) yields

-1
B1
4 ﬁ11n(L+3§)
o) = — |1+ S5——2 | 161

The running mass is determined by

ml) = i) 7

o4



in terms of a reference current quark mass m;(u). The RG coefficients are given by

Bo = 11—3Np; B = 102 FN;
101 _ 3

163
Yo = 2; Mmo= 13wy (163)

The integration constants A and m; (o) depend on the effective number of flavors Ny at a given
energy. Their dependence on Ny is determined by continuity of a4(p) and m;(p) at the flavor
thresholds [56].

Applying the heavy quark QCD corrections to the parameter renormalizations we obtain the results
of Figs. 20 and 21.

PR S Y Y Y P S | By |

0.240+ —- 1 Ot [
=== 2: Ola a,) on shell mass I
1 ...... 3: Ola e, ((my*m)? on shell mass|

0.235 —— &;: MS running parameters -

0.2304
1
‘3.225*4

sin?® (m, = 100 GeV)

<

0.220+

Figure 20: QCD corrections for the heavy top contribution to sin? ©

Using RG improved perturbation theory clearly makes the QCD corrections small and leads to
much better control of the uncertainties. In particular we no longer obtain a large discrepancy
between using analytic expressions or doing the dispersion integrals numerically using running
parameters under the integral. In addition, corresponding QCD corrections to the Zbb vertex
have not been calculated to our knowledge. Using a scheme which yields large QCD corrections we
would expect additional large corrections for all quantities depending on Zbb vertex corrections.
For the M'S scheme we can hope that these corrections are small as well.

Appendix: Explicit Expressions
We use the following notation
y = (my +my)?/s=a"

where m; = mg = my; or my for the NC amplitudes and m; = m; and mo = my for the CC
amplitudes. We shall assume m; = 0 whenever this limit exists.

In the NC case we conveniently use the variable

g_M—l
CV/I—y+1

taking values
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o (my = 100 GeV)

i —= 1t O(a)
0990' === 2: Ola &) on shell mass E
o.9ss-f ------ 3: Ol oglimyem)?) on shell massi_
] —— & MS running parameters .
0.580 F
160 1§° ”!0 -zéou ﬁaalo
m, { Gev )

Figure 21: QCD corrections for the heavy top contribution to Ap

0<¢E<1 for s<0
E=e¥%, 0<p<m for 4m?>>s>0
-1<£<0 for 4m? <s.

Using the abbreviations

f=—gm& g=I(l-8); h=In(l+¢)

and
ALiy = 2Lig(€) — Lig(€?)
ALi; = Lis(€) — Liy(¢?)
we define
AA = —%(ALig + Ref (2h + g))
BB = —2 (2h 4 g + 3Ref)
XX = ALiz+ 2 f AL12+§ f? (2h+ g)
YY = 2 (ALiy + 2f (2h + g) + 3f?) .
In terms of these functions we find the following expressions for the two-loop QCD vacuum polar-
ization amplitudes: (II = 4 and ¢ =1n ZL—;)

%]ml‘[gc = (42 —1/2) AA +/1—1/z ((z +1/2) BB + (2 + 3/2))
+(8x—4/3—"T7/(6z)) Ref ; z>1
%Jmngc = (r—6+2/2)AA+/1—1/z (z—1)BB+ (x —3+1/(42)))
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+(8z —22/3+5/(6x) + 1/(42%)) Ref ; x>1

%Reﬂ{yc = (e —1/2) XX+ /1 —1/a (z+1/2)YY =2 (z+3/2) f)
1

—(87 —4/3 —7/(62)) f>+13/6+((3)/z +x (55/12 — 4¢(3) — € — —)
;—ZReﬂﬁc = (4o —6+2/2) XX+ /1 -1/2((x —1)YY =2 (z —3+1/(42)) f)
—(8x — 22/3 4+ 5/(6x) + 1/(42?)) f*
F13/6 — 3C(2) — 2C(3) /2 + 1/ (4z) + 2 (55/12 — 4¢(3) — £ — d—i4)
+(—=11/8 + 6¢(3) + 3¢(2) — 11/2¢ + 3¢* + ﬁ(% —11/4) + = 4)2)
4 RellYC = (4 +1/2%) XX + /1 = 1/2 (—1/(22) YY — (2= 5/(3x)) f)
+(16/(3x) + 13/(62%) + 4/(z*(z — 1))) f*
—1—-3/(22) — ¢(3)/2* + (55/12 — 4¢(3) — £ — ﬁ)
An? RellY¢ = (4—2/2®) XX + /1 —1/z (1/x YY — (2+13/(3z) — 1/2%) f)
—(20/(3x) — 13/(62%) —1/(22%)) f*
14 3/a 4 2/22%C(3) — 1/(22%) + (55/12 — 4C(3) — £ — ﬁ) (164)

in agreement with Ref. [49]. The UV singular terms proportional to 1/(d — 4) as well as the
renormalization scale i dependent terms cancel in the physical quantities given below. In the MS
scheme - 4+ ¢ = —1/21n(p?/m?). We have written the r.h.s as analytic functions. The imaginary
parts are nonzero only for s > 4m?2. The real parts are evaluated as follows: In the physical
regions s < 0 and s > 4m? the functions h and g and the di- and tri-logarithms (Liy(£), Liz(€))
are real. While in the space like region f is also real, in the timelike physical region, s > 4m?,
In¢ = In €] + im and the only changes are the replacements f> — (Ref)? — %2 and f — Ref. In
the unphysical region 0 < s < 4m? we have to replace

In¢ — p
2

V1—1/z — —\/1/z—1
¥

4

YY — ImYY = 2 (ImALi, — 2% Re(2h + g))

2h+g — Re(2h+g) =2In(2v1 — z) + In(2y/x)
f = Imf=-—=

2o et (165)

where ¢ = 2 arcsin \/x and

are given by differences of Clausen functions.
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The two-loop contribution to the Adler function related to the QCD vector neutral current vacuum
polarization amplitude it is given by

1;[;52) = (Reﬂgc(s)/s - Reﬂ{yc(s)) :

Wl

Explicitely:

1202117 = 22 XX+ /1 —y (14y)YY —14/3y )
+ (3 —4-4/(1-y)) f?
+1+11/3y +2y*¢(3) .

For the CC amplitudes (taking m; = 0), we introduce the abbreviations

a=In(—z); b=In(1-1x)
a=In(x); f=In(x—1)

and define, in analogy to the NC case,

AA = £ (“2Lin(r=) +af )
BB = <

6
YY = %Lig(x) .

The charged current (W-propagator) two-loop QCD vacuum polarization then reads

%[mﬂ%c = (20-3+1/2®) AA+ (20 +1—1/7) BB
+(4x — 3 —6/x + 5/2?) ;—25

1
+(6:c—15+4/x+5/:c2)ﬁ o >1.
2
1
%Rengf = (20-3+1/2%) JXX+ (20 +1-1/2) YY
b2
+(4r —3—6/x+5/2*)—
24
—b
+(6x — 15+ 4/x +5/2%)—

24
+@ (22 -3) + % (4z — 7 —2/x) +13/12 — 5/(24x)
1 1
7 (55/12=4((3) = (= —)

+i (—11/8 + 6¢(3) + 3¢(2) — 11/2¢ + 30> + ﬁ(% —11/4) +

o8



7 Rell§¢ = (1—-1/2%) XX+ (1/x+2/2*) YY
b2
+(1+1/2 —2/2%) —

4x
+(B3+1/z+ /2* —5/2°) 1—2()
+C@) 4+ % (142/2) — 214 (6 —9/z — 10/22)
+i (55/12 — 4¢(3) — € ﬁ) (166)

in this form given in Ref. [49]. The formula for the derivative is new. The expressions for the real
parts are adequate for x < 1, where all quantities on the r.h.s. are real. For x > 1 one uses

XX = ReXX = Lis(t%)+ 28Lia(+5) + (£ —¢(2)) (5 — ) — ¢(3)
YY — ReYY = 2 (Lia(:&)—aB+38%+2((2))

B = Reb® = B2—6C(2)

b — Reb = (.

amplitudes of the flavor diagonal vector current.

(167)

Addendum: General results

a) Large momentum expansion:

Using the same notation for the vacuum polarization functions as in the one-loop case, and defining
the latter similarly to eq. (2.3)

Mip(s) = — = | v'o/Tly () + a'a/Tig  (s) |

one obtains for Hg’f(s) in the limit |s| — oo

45| = 00) = 5 [2 = 50+ ) + lloga+log B) + 1 — 40(3)

12
6 1 11 11 11
2 R— — [ — J— —_ —_
b maFme |5+ < (5 =30 =3m) = ot m) - 5
3 9 3
+ Llputm)? = (loga+1og ) — S logalog f +6¢(3)]
m27 3 3 3 3
+ (mz = m)log 16 |+ (o + ) — ozt log ) + 7]
+ 3(m2+m?)(loga + log B)
6 1 /11 11 3
MPA(sl =+ 00) = (maFme)® |5+ (5 — 30— 3m) = (a+) =
3 9 3
+ lpat m)? = lloga +1log ) — Slogalog 4+ 6¢(3)]

3

2
2 2 mg [ 3
+ (ma_mb>logﬁg {—EﬂLi( 1

3
pat-m) — {lloga+log ) — 5

with « = —m?/s, 8= —m?/s and ((3) = 1.202. At this stage a few remarks are mandatory.

i)  In the previous expressions the momentum transfer is defined in the space-like region, s < 0.
The continuation to the physical region can be straightforwardly obtained by adding a small
imaginary part —ie to the quark masses squared. This reduces to make the substitutions
log(mgvb/ —s5) — log |m§7b/ —s| +im.
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1)  As expected, only the transverse part of the vacuum polarization function is quadratically
divergent for |g| — oo. This divergent term, the expression of which is in agreement with
the one obtained in Ref. [?], is the same for axial and axial-vector currents as expected from
chiral symmetry. Moreover, as required by the Kinoshita—Lee-Nauenberg theorem [?], this
term does not introduce any mass singularity as mq tend to zero: —(p,+pp) and log a+log
combine to give 2log(u?/ — s).

i71) Since the vector part of the longitudinal component should vanish for m, = my, it must
be proportional to (m, — my) or (m? — m2); and since the axial-vector component can be
obtained by changing the sign of one of the two masses, it must be proportional (m, + m;)
or (m2 —m3) [logm?2/m} alone would have introduced mass singularities]. This behavior is

explicitely exhibited by the previous expression of HE’A(S).

Let us now write the real parts of I} (s), analogously to eq. (2.10),

e 2
I (5) = 5K+ (mo )+ (2 — i) log 78 2o + F{ (s

where the two-loop divergent constants X», Y5 and Zs involve only the poles in € and the logarithms
of the scale u of the expressions of eq. (3.3); they are given by

. 1 Y
X2 = ——lOgm,;nb
€
~ 6 2 /11 MMy 11 MMy 9 Ma My,
Y, = 6—2+E<Z—310g e )—?lo -— +3log 5
- 3 o
Zy = —2 43log
€

b) Low momentum expansion:

We come now to the discussion of the zero-momentum transfer behavior of the vacuum polarization
functions. In this limit, the evaluation of the two—loop diagrams Fig. 1b in the on—shell mass
scheme, leads to the following expression for H;:?(O)

11

6 2 11
R0) = Splmd +md)+ = | (m 4+ md) = 3mp, — 3| — (20, + miEp)

35 1 m m
+ 3m2p: + 3mip; + g(mi +mg) + i(mi —mj) [G <H§> -G <m_§>]

Lo miemd
mg—mp mp o (m2 —mi)2 T my
12 2 11 3 31
+ mamy {——2 + - (3,% + 30 — —> ~(pa+ )% + 4(pa + po) — —
€ € 2 2 4
g Ml = MiPa | o MGG o M
* m2 — m} * (m2 — m3)? m2
a b a b b

where, in terms of the Spence function defined by Lis(z) = — Ji 3~ log(1 — zy)dy, the function G
is given by

G(x) = 2Liy(x) 4+ 2log z log(1l — x) + - i - log?
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As one might have expected, there is no singularity in the self-energies in this limit. In addition,
besides the manifest symmetry in the exchange m, <> m,;, the previous expressions exhibit the
facts that H%ﬁ(O) can be obtained from H?{X(O) by simply making the substitution mg,(m;) —
—mg(—my) as expected from 75 reflection symmetry and that the longitudinal and transverse
components are equal. These features provide good checks of the calculation.

Using the previous expression, one readily obtains the QQCD corrections to the contribution of
a heavy quark isodoublet to the p parameter in the general case m, # m; # 0. Defining the
contribution to the p parameter analogously to eq. (2.15)

@, _ V2Gras
A p - 871-2 T f2(0amaamb)
the function f5 will be given by
2,012 2 2 2 2
2 2 e 1y, m, mg + 1y, my, 2 2
fg(o, My, mb) = -3 {ma + my, + 2 m lOg m_g ll + w log m—3‘| + (ma — mb)

m2 m2 m2 m2 m2
X |2Liy [ —2 | +2log —21 — ) - % ]og® —% — —
l 12<m§>+ % Og( mz> m2—mi % m 3”

a

f2(0,mg, my) is free of ultraviolet divergences as it should be since Ap is an observable physical
quantity; furthermore it does not depend on the 't Hooft mass scale y1. Note that the symmetry in
the interchange of m, and my, is now hidden in the term in the last line of the previous equation, but
this term is simply G(m2/m3) —G(mji/m?2) and we have used the fact that G(1/x)+G(x) = 272/3.

In the limit of large mass splitting between the two quarks, m, > my, the QCD corrections to the
p parameter reduce to the known result for m, = 0 [7]

2 Qg 2
as = —— , Mg, — (1 R
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5. THE Z LINE-SHAPE

To lowest order, the total cross-section for ete™ — ff is given by Eq. (46)

4 22
S %O‘ff N R/ (168)
2G M3
—2an%chRexveva{f
G2M4
+ 67?5 Cf|x\ (v +a )(UfRf—l—afRf)
where
S
x(s) = (169)

S — M% + iMzrz(S)

is the Z-resonance factor. The three terms represent the QED, the vZ -interference and the
Z-exchange contributions. The functions

Rl = y/1-

describe the dependence on the mass of the final state particles. For the light fermions R} ~ R/ ~
1. The s-dependent “width”, appearing in the Z propagator in Eq. (169), is determined by the
imaginary part of the Z self-energy MzI'z(s) = Imllz(s) [57]. To lowest order one has

V2G , Mys
Iy(s) = #ZN#(U;R{ +a3RY) (170)
\/_G Mys s
z

The s dependence of the width causes a large shift by AE = —5 A;ZZ
(see below).

Near the Z- resonance the weak corrections can be included using Eq. (106) and a@ — a(M%) ~
(128.797(123))" in the Born formula. Away from the resonance this approach may be generalized
by evaluating the the p;’s and ks at s = 4E? # M2 (E, the beam energy), thereby they are no
longer gauge invariant and the box contributions must be included

Ttot = 00,eff + 00pos (171)

in order to get a gauge invariant cross-section. However, numerically it turns out that the box
contributions are negligible (= 0.05% within My 4+ 10 GeV) in the 't Hooft-Feynman gauge.

Using the effective parameters one arrives at an improved Born approximation which in the reso-
nance region takes the form [57-60]

127rf Ts [ s s — M3 Ty s
’ Rp——aZ +Tj—— 172

where

_M2
D(s) =s— Mz +iMzl4(s) , Fz(s):Fz{ i 5 Z+...}

+é
M3 Mz
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and

f 47TOZ2(M%)Q3‘NCfKQCD ~ { 0 006 U eak (.f = /J“’T) (173)

7QED = 3s 0.001 o/ ear  (hadrons)

the QED background term. Since initial state radiation will be taken into account separately we
have replaced I'; by T'e = I'./(1 + 32). The expansion Eq. (172) near the peak makes use of

2
the fact that MQZ and J\FJ—ZZ are of order O(a) near the resonance. The correction terms Ry, Iy
and € are calculable functions within the Standard Model [60]. Z; and ¢ represent absorptive
effects depending on known particles in the spectrum up to the Z mass only. The correction

€=y €f, which takes into account possible final state mass effects (according to Eq. (170)
m (12
~ S Ly ~ 1.7 x 1073 (f = b)), is negligible for all the 5 known light fermions. The

gf - M2 Ty v2 +a2 -
1
correction Z; leads to a small change of the normalization of the peak by (1 + IfJ‘F/[—ZZ), whereas
the effect of Ry is a slight shift to the right of the maximum of the peak. The leading (tree level)
contribution to Ry is the 7-Z interference term (see Eq. (168))

8QQ vy ma(M2)

R, = 174
I T @) + ) VIG,M )
Notice that an extra neutral vector boson Z’ would yield an additional interference term
2 (v, +da.) (Vv + dra 12

(2 +ad)(vp+aj)  V2G.(M7 - M3)
if we assume the coupling is given by

ENCznt = g/Z/ ffy ( - affy5) f (176>

All other contributions are small loop-corrections. Numerical values are given in Table 8. For Z;
the values range from ~ —1.0 x 1072 for lower top masses to ~ —2.2 x 1072 for m, = 230 GeV.
Within the Standard Model the effects of the corrections Zyand € to the line-shape are negligible.

Since Eq. (172) models the Z-peak to high accuracy, a model-independent fit with 4 parameters,
the cross-section at maximum (normalization), My, I'; and Ry, is possible for each flavor f.
Thus, the measurement of o(ete™ — ff) at 5 different beam energies will fully determine the
characteristics of the Z-resonance.

We ignore the corrections Ry, Zy, € and aéED, for the moment. Then, o.ss(s) differs from a
Breit-Wigner (BW) form only by the s-dependence of the width, i.e. by a substitution

s— Mg +iMzT7 — s — My +isTz/Mz = (1 +iv)(s — M} +iML7)

with
Y 2\—-1/2 T 2\—1/2 L'z FZ
My = Mz (1++7) , Ty =Tz (1+v9) y, Y= = (177)
MZ MZ
Thus, with opy (s = M2) = 07", we may write
T2
0epr(s) = opw(s = M) - - = (178)

(S _ M2)2 + M?212
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as a Breit-Wigner resonance in the reduced parameters Eq. (177) [61] By Eq. (177), the peak
gets shifted by My — M, ~ —34 MeV and narrowed by I'y — 'y ~ —1 MeV (negligible). The
peak height remains unchanged.

If we ignore aé;ED in Eq. (172), the position of the peak is at

V Smax = MZ (]- + 72(]- + Rf))l/4 (179)
with

eak (1 +792)% +1
O-eff,maxzo-? k( 72) (1+If’}/) (180)

and right and left half-maxima at

- r
VAL~ (MZ (1+~2)Y2 + 72 ) J(142(1 — 4Ry)V5. (181)
The slowly varying QED background term slightly rises the peak such that the width of the peak
measured between the half-maxima appears increased by §(,/5; — /5-) ~ UQED ~ 15 MeV

obs
. . . . _ _90ED .,
g(z)rl\(/{\; , 7). This term will be enhanced by QED corrections to §(,/sy — /S _) ~Ty ot =
eV.

In order to obtain the observed cross-section, we have to include the QED corrections, the virtual,
soft and hard photon effects. Particularly important is the initial state radiation which leads to
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Figure 22: O(a)) QED corrections to ete™ — ff

huge corrections in the line shape. Multi soft-photon emission must be taken into account in order
to reach the precision needed. Due to initial-state photon emission the shape of the resonance is
changed according to the convolution integral

kmaz
oiti(s) = [k puns()o gy (s(1 = k) (182
where p;,i (k) is the photon radiation spectrum [62], which has been calculated up to two-loop order

[63]. The variable k = E. /E}, is the energy of the emitted photon in units of the beam energy, such
that s’ = s (1 — k) is the effective s available for Z-production after the photon has been emitted.
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Emaz is the maximum photon energy accepted, kmaZ;Z 1 —s¢/s in terms of the minimum invariant
mass sg > 4m% needed to identify the final state ff pair.

The structure of the photon distribution function is
Pini(k) = BEP (1 + 6775 + 657%) + 67 + 0y (183)

with g = 2@ (ln— — 1) ~ (0.1077 . The infrared sensitive part has been exponentiated, which

takes into account multi soft photon emission [64]. Exponentiation leads to a shift of the peak by
AE = 14 MeV. The corrections are given by ( v+s = virtual+soft, h = hard)

3 2
gots = % <§L + % - 2) (184)
aN\2/(/ 9 7
5§+S = (;) <(§ — ?)Iﬁ —+ 821[/ -+ Sgo)

«
o = —(1-L)2-k)
o 2
53 — (;) (h22L2 + hglL + hgo)
where L = In =% (~24.18), hyy = =02 1n(1 — k) + (2 — k) (A In(1 — k) — 2Ink — 3) — k and

the other two-loop correction coefficients s9; and hy; are given in [63]. The main influence on the
Z line-shape is a reduction of the peak height

obs I B g, 1+5NR
(U ) = (52) @+a) 4o aepll * 0g:p) (185)
Ueff peak MZ Upeak
5 0.744 f=p,7
= 078t {0739 hadrons

with an error £0.001, and a shift of the maximum of the peak

2

s I's
v Smar = Mz—Fgﬁrz— 4M (1—Rf) (186)
~ My;+108.4 MeV —17.0 MeV + - --

Mz+{ 92 MeV  f=u,T1

l

12

93 MeV hadrons .

The first correction is the QED effect the second the phase space effect which includes the effect
due to the s-dependence of the width in the Z-propagator, Eq. (169). To good accuracy, the
observed peak cross-section is represented by

obs
obs Y 127TFeFf obs 2
= M 187
Upeak <Ueff ) ool M2 F2Z + 0o QED( Z) ( )
where
UZ;ED(ME) = ogep(M3)(1+ 5QED)
B, M: B |
SNE o~ (L2 T2
@ED ( S0 It ( 3 2)

and so; is the minimum invariant mass for the final state f f pair. If we chose sp, = 4mi for muons
and so, = (10 GeV)? for hadrons we obtain d¢y £, = 0.678 for leptons and 0.271 for hadrons.
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A very important observation is that this result is practically independent of the model dependent
correction Ap, since the ratio (I'.I';)/I'% is almost insensitive to the rescaling I'; — p;I';, because
the large contributions to p; are universal if ¢ # b. An exception is the top contribution from the
Zbb vertex. The width can be extracted unambiguously from the location of the half-maxima

5T — A~ FZ(1+(§ﬁ+gln2)(1+ﬁ+%5) (188)

obs

s 5 2 UQE'D s
_ _ _ 1 —
Sy =gy et o, 1+ 8+ 730)

~ T, 4 396 £ 4MeV  f = pu, T
- 7z 360 + 3MeV  hadrons

For a more detailed discussion we refer to Ref. [65].

The important observation is that, to high accuracy, these effects only depend on M, and I'; and
universal QED corrections and phase space terms. This makes possible an unambiguous (model
independent) extraction of My and I'; from the line-shape. For numerical results see Tab. 8.

Table 8a. The Z line-shape for eTe™ — u™p~ (M7 = 91.176 + 0.021 GeV,
as = 0.117 £ 0.01). Masses and energies are in GeV. Results in the
upper (lower) part are before (after) QED corrections are taken into account.

my | My | Omae (D) | \/Smaz | /5= VSt | Ry - 102

90 | 100 2.001 91.159 | 89.920 | 92.416 2.50
110 | 100 2.003 91.159 | 89.919 | 92.418 2.64

130 50 2.003 91.159 | 89.916 | 92.420 2.89
130 | 100 2.004 91.159 | 89.917 | 92.420 2.80
130 | 1000 2.006 91.159 | 89.921 | 92.416 2.48

150 | 100 2.005 91.159 | 89.914 | 92.422 2.99
200 | 100 2.009 91.159 | 89.907 | 92.429 3.61
230 | 100 2.011 91.159 | 89.902 | 92.435 4.09

90 | 100 1.491 91.267 | 89.969 | 92.845
110 | 100 1.492 91.267 | 89.968 | 92.847

130 50 1.493 91.267 | 89.965 | 92.850
130 | 100 1.493 91.267 | 89.966 | 92.850
130 | 1000 1.494 91.267 | 89.969 | 92.844

150 | 100 1.495 91.268 | 89.964 | 92.853
200 | 100 1.498 91.268 | 89.957 | 92.863
230 | 100 1.501 91.269 | 89.951 | 92.870
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Table 8b. The Z line-shape for ee™ — hadrons

my | My | Omae (D) | \/Smaz | /5= VSt | Ry - 102

90 | 100 | 41.403 | 91.160 | 89.928 | 92.411 6.70
110 | 100 | 41.416 | 91.160 | 89.926 | 92.413 6.89

130 o0 | 41.425 | 91.160 | 89.924 | 92.416 7.23
130 | 100 | 41.423 | 91.160 | 89.925 | 92.415 7.11
130 | 1000 | 41.430 | 91.160 | 89.928 | 92.411 6.67

150 | 100 | 41.439 | 91.160 | 89.922 | 92.418 7.35
200 | 100 | 41.474 | 91.160 | 89.915 | 92.425 8.08
230 | 100 | 41.501 | 91.160 | 89.910 | 92.431 8.61
90 | 100 | 30.635 | 91.268 | 89.986 | 92.826
110 | 100 | 30.649 | 91.268 | 89.985 | 92.828

130 50 | 30.661 | 91.268 | 89.983 | 92.831
130 | 100 | 30.659 | 91.268 | 89.983 | 92.831
130 | 1000 | 30.655 | 91.268 | 89.986 | 92.825

150 | 100 | 30.676 | 91.269 | 89.981 | 92.834
200 | 100 | 30.720 | 91.269 | 89.974 | 92.844
230 | 100 | 30.753 | 91.270 | 89.969 | 92.851

So far we have not discussed the QED corrections from initial-final state interference and from
final state radiation. Both are small if no tight cuts to the photon spectrum are applied. In any

case an O(a) calculation is sufficient for these corrections which are to be added to o2 in Eq.
(182).
For the interference term we have
00s 1
dafni(s) = (0 (ko) + 0% (ko) ) AJF (s) + 8 (ko) Ay (s)
kmaz _
+ dk pini(k) A (s, s(1 = k)) (189)

ko

where, denoting z = (M% — iMzT'2)/s, [66]

dih(ko) = doGy {2Inky — ko — %}
v
5% (ko) = 4O;C_Qf{21n ko +In|z| — Re[z(z + 1) In % +(z=1)(1 =k} (190)

are the virtual contributions from the vy-boxes and the vZ-boxes, respectively, plus the real photon
contribution (E.,/Ey < ko < kmaz)- Agf and Af; have been given in Eq. (48) and

404Qf2— k
k

(191)

Pint =
is the photon radiation spectrum.
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Figure 23: QED corrections to the Z line shape.

The kernel A?’;(s, s') follows from the C-odd function A?’;(s) given in Eq. (198) below by sub-
stituting
1 *
Rex(s) — gRe(x(s) +x"(s") (192)
IXI’(s) = Re(x(s)x*(s))

such that AQ;(S, s) = AQ;(S). Near resonance, where the vZ interference term in Agpg(s) (first
term in Eq. (198)) is negligible, we have

40éQf
m

—Re[z(z+ 1) In

Somt(s) ~

i {2In kppee + In |2

kma:c +z—- 1
Pmee D22 (s = 1)1~ Fiman) ]} - App(s) o0(5).

For s ~ M2 and loose cuts (kmas ~ 0.1 — 1) the bracket reduces to 1(I'z/M)?, which indeed leads
to a negligibly small contribution. For tight cuts the leading term in the bracket is 21n(k;0¥—zz)
which again is small compared to the term 2In ko(In > — 1) sensitive to cuts from the initial state

bremsstrahlung and a similar term from final state radiation.

The final state radiation factors out, yielding

kmal‘
sote) = (Sptho) + [ o)) ou(s) (193)
0
with
2 2
5fz’n(k’0) — aff <2(Lf — 1) In ko + gLf + % - 2) (194)

the virtual plus soft photon contribution and

_ O‘f? 1+ “k_ k)” (Ly — 1+ 1In(1 — k) (195)

Pfin

68



40.00]
b I— N,"3 E
35.00 N,~2 F
] = Nt Qd F
30.000 - A  DELPHI & -
] 7\ i
25.00+ -
o ] :
c ] g
~ . 20.00] s
1 ; i
B ] [
15.00 d
] E
10,00 -
: :
5.004 -
0.00+ [

86 88 90 92 94 98

Een ( GeV )

Figure 24: Example for the observed hadronic cross-section.

m2
the hard photon radiation spectrum. If no cut is applied (kyu = 1 — 4Sf ~ 1) we get the small
contribution
in 30&@2
00055 (5)/70(s) = — - = 0.00174 Q] (196)

which already has been included in the I';’s (Tab. 6) and which are used in the calculation of the
effective cross-section Eq. (172).

In Figure 23 we illustrate the QED corrections to the Z line-shape. Figure 24 shows some experi-
mental data points together with the SM prediction.

6. THE FORWARD BACKWARD ASYMMERTY

In Section 3 we have discussed the various definitions and properties of asymmetries at the Born
level. We have mentioned that the precision measurements of asymmetries, predominantly caused
by the parity-violation of the weak interactions, belong to the most important tasks for LEP1. Of
particular interest is the investigation of the asymmetries at the Z-resonance, where ete™ — ff
is practically a pure weak neutral current process, a fact which provides clean and precise tests of
the NC couplings of the different flavors (see Eq. (2-4) and Section 2). Here, we shall concentrate
on the discussion radiative corrections for the forward-backward asymmetry [67] Arpp = e
(0p(B)y = cross-section integrated over the forward (backward) hemisphere) which in lowest order
is given by Eq. (49)

AFB(S)
A — 197
rB(8) — (197)
with (yy = (1 - 220))
_ 2
AJ;J;(S) = —an ﬁG“MZchRexaeafyf (198)

2s
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G2 Mjy
21s

+ ch|X|2UeUfaeaf Yy

and op(s) the total cross-section given in Eqgs. (46),(168). In Eq. (198) the first term is the
~vZ-interference and the second the Z-resonance term.

At the resonance we have

20cae 2vVray Yy

A{?];(S = M3) = § 7 7 7
4 (v + a?)(viRy + a7 Ra) + (54—2)2(1662} sin® O cos? O RY)

(199)

where the second term in the denominator is due to the QED background term in the total cross-
section.

The finite mass effects can be ignored if f # b. For the b-quark asymmetry Eq. (158) is a good
approximation.

If we neglect the small contribution o grp (see Eq. (172)) to oo(s), for s = M2 we obtain the
simple expression

F F 3
Aty = (s = M) = S AA; (200)

with A; defined in Eq. (54) depending on sin® ©; only. The improved Born approzimation again
follows by using the effective weak mixing parameter sin? ©; = x; sin? Oy as discussed extensively
in Section 4.3

The expected accuracies for A{;]; (or, equivalently, sin®©;) are 0.0035 (0.0017) (f = w), 0.007
(0.0012) (f=s), 0.007 (0.0015) (f=c) and 0.005 (0.0009) (f=b). For A7, 0.011 (0.0014). An inte-
grated luminosity of at least 100 pb~! is assumed here.

Notice that App is largely insensitive to the normalization of the cross-section and the s-dependence
of the width, which are important for the line-shape.

Away from the resonance the correction factors p; and x; must be evaluated at s # M (they are
no longer gauge invariant) and the box contributions must be included

Ay = (A 0ers + 0 (AF ) bou (201)

in order to get a gauge invariant cross-section. Again, numerically the box contributions are
negligible (~0.02% within My + 10 GeV) for the 't Hooft-Feynman gauge.

Due to the high precision required, leading higher order effects (beyond the one loop level) cannot
be neglected. For the real parts of the effective sin® © ¢, Eq. (115) together with Eq. (124) provide
the correct summation of large higher order terms. The imaginary parts must be included as well
since they give rise to non-negligible a O(a?)-contribution AA{;]; = (0.002. In Figures 25 and 26
we compare the expermental results for A% 5 and A% 5, respectively, with the theoretical prediction
as a function of the top mass. In Table 9 some numerical results are presented.
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Table 9. Results for A?J;. (Mz =91.17 GeV,
as = 0.12, from Ref. [69]).

l c s b —

90 | 100 | 0.0135 | 0.0687 | 0.0868 | 0.0840 | 0.1258

100 | 100 | 0.0138 | 0.0627 | 0.0881 | 0.0853 | 0.1277

120 | 100 | 0.0147 | 0.0649 | 0.0910 | 0.0881 | 0.1318
120 | 500 | 0.0134 | 0.0614 | 0.0864 | 0.0836 | 0.1251
120 | 1000 | 0.0128 | 0.0598 | 0.0842 | 0.0815 | 0.1220

150 | 100 | 0.0162 | 0.0687 | 0.0960 | 0.0929 | 0.1391
200 | 100 | 0.0195 | 0.0766 | 0.1062 | 0.1027 | 0.1541
250 | 100 | 0.0241 | 0.0866 | 0.1190 | 0.1150 | 0.1725

The QED corrections, including soft and hard photon emission, can be calculated in a way similar
to the one outlined in the previous section for the total cross-section. The observed asymmetry is

AFB,obs(S) - AFB,obs(S)/O-obs(s)

where g,5(s) is given by Eq. (182) and

Brpon) = [ dk prins ) Armoers (51~ ) (202)

In order to keep as close a relation to the C-even case of Eq. (182) as is possible we split off a
regular kinematical factor by writing [68]

1—-k
PFB,z‘m'(k‘) = mpzm (203)

The “reduced” radiation spectrum p;,; is then given by p;,; of Egs. (183) and (184) with the
replacements

al+(1—k)? 1—k
o sh— = ? 1n(1—k/2)2
1-=)p (-2

2z * VT
—(14+2)nz+2(1 —2)]/4

1
(arctan — — arctan /)

NG

h22 — h22 —|—[

with z = 1 — k. Of course the subleading terms hy; and hog of Eq. (184) also change.

Because Arg(s) is a strongly increasing function in the resonance region, the effect from the initial
state bremsstrahlung is very large and negative, typically 0Arpp = —0.025, which is in modulus
as large as the asymmetry itself. Certainly, a full two-loop calculation (determination of hy; and
hog) for the initial state QED corrections is the most urgent missing piece necessary to make
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Figure 25: LEP measurement of A% .

well established predictions for the observed asymmetry. The other O(a) QED-effects are the
initial-final state interference and the final state corrections.

The interference term is given by

int
5AFB ,0bs

where [68]

(s)

5ZJB,int (k()) =

54t im (ko) =

1
= 0¥ int (ko) 03 (5) + 5 (Fint (ko) + 05 ins (ko)) 03 (5)
k'maac
ko) ofy(8) + [ dkprn (k) ao(s, s(1 = k) (204)

36!22le{ (1+81n2)1nk0+§1n 2—zln2———|— }
7r

12
3a226Qf{ (1—|—8ln2)lnk0+3—7ln 2—51 2—|— +—
7T

4 8 3

t4z(1+2)In2+ 2 — 2z3% +(22—5/2)Inz

9 3 -1
—|—<(5—3z+622)1n2—2+§z—§zz)lnzZ

(1—3z+ 62> +82%) {Sp(l - l) Sp(1 — ;)] +423Sp(1 — é)} (205)

are the virtual contributions from the vy-boxes and the yZ-boxes, respectively, plus the soft photon
contribution (E,/Ey < kg < kmaz). The (s have been given after Eq. (46) and Sp(z) = Liy(x)
is the Spence function [54]. By z we denoted z = M3/s with M3 = M2 — iM ;T 5.

PFBint

3aﬁ;@f {_(1 — k—k%/2) + (4 — 5k + 5k*/2) In(1 — k) (206)
—(8 — 12k + 9k2 — 51{3/2)@}
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Figure 26: LEP measurement of A% .

describes the photon radiation spectrum [68]. The kernel o¢(s,s’) follows from the C-even total
cross-section Eq. (168) by the substitution Eq. (192) such that oo(s, s) = oo(s).

For s ~ M2 and no cuts (ky,q: =~ 1) the interference contribution is proportional to (a/m) (T'z/Mz)
and hence negligibly small (5 x 107%). For My < /s < Mz + 2 GeV and k., < 0.2, i. e., for
E., < 10 GeV the contribution is smaller than 107 [67]. For tight cuts (k.. = ko ~ 0.01 or
smaller), but still near resonance, the leading correction in the angular distribution coming from
soft plus virtual photons is given by

4Q.Qfa . 1 —cost ko aly
1 1 O(——) .
+ s nl—i—cosﬁnz—le/{:ojL (ﬂ'MZ)
Integration yields
. 30Q. M%/s—1+k
5A%‘g7obs(s) ~ %{(1 +8In2) In i/S e 0 }-oo0(s). (207)
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These corrections are positive and of the order of a few percent. Away from the resonance correc-
tions from the initial-final state interference are at the percent level.

] —-= o}
0.200

0. 100

-0. 100

88 8 90 91 92 93 %
Vs ( GeV )

Figure 27: QED corrections of A% .
The final state QED corrections are the simplests and least important ones. Since the photon is

emitted from the final state the convolution Eq. (201) we had in case of initial state radiation
turns into a simple product

585 0(5) = (Sl [ pyn®)) (Srhass (9 (209

where the virtual plus soft photon contribution d;,(ko) is given again by Eq. (194) and

k) = aff {1 + (1k— B L 1) 40 ln(lk— £, k}

is the hard photon spectrum. If no cuts are applied (ke >~ 1) this correction is zero:
OALE ops(5) = 0. (209)
On the other hand oy gets corrected according to Eq. (196). Therefore, a small negative correction
SAI JAL = —i—: Q2 ~ —0.00174 Q> (210)
is obtained. The soft photon effects (tight cuts) are the same for C-odd and C-even functions and

therefore do not affect the asymmetry, §(App)/™ = 0, independently of soft photon resummation.

The results given above for the final state photon radiation follow immediately from the classical
calculation of the QCD corrections [52] by the substitution %Qfe — 1. With the latter replacement
all we said about the final state QED corrections applies to QCD corrections as well. The QCD
corrections have been discussed in more detail in Section 4.5.
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At present, asymmetry measurements are not yet very precise. The reasons for the difficulties
are obvious. The leptonic channels have a relatively low cross-section and the asymmetry A‘};“ B
is numerically small. For the hadronic channels flavor tagging is necessary, which is difficult and
leads to a substantial efficiency loss.

In future, with increasing statistics, the asymmetry measurements will become more and more
important to disentangle possible new physics from standard model effects.

said on the final state QED corrections applies to QCD corrections as well. The QCD corrections
have been discussed in more detail in Section 4.5.

At present, asymmetry measurements are not yet very precise. The reasons for the difficulties
are obvious. The leptonic channels have a relatively low cross-section and the asymmetry AEB” B
is numerically small. For the hadronic channels flavor tagging is necessary, which is difficult and
leads to a substantial efficiency loss.

In future, with increasing statistics, the asymmetry measurements will become more and more
important to disentangle possible new physics from standard model effects.

7. TESTING PHYSICS BEYOND THE STANDARD MODEL

Many authors have considered all kinds of extensions to the standard model. Here some of the
simplest possibilities of new physics effects are discussed. General introductions to this subject
can be found e.g. in [70-73] and in the “New Physics” sections of Ref. [74].

7.1 Additional Fermion Doublets

An almost standard extension of the SM is to allow for additional lepton and quark doublets.
It should be remembered here that the existence of new light neutrinos, leptons or quarks with
standard couplings is ruled out in particular by the LEP results [1]. Most limits are given by
the kinematical limit for pair production. Thus, typically, my > 45 GeV for Dirac particles
f =wvp, 0V etc.. For Majorana neutrinos the limits are slightly lower, vy, > 36 GeV, due to the
different threshold behaviour.

We thus focus our discussion on virtual fermion effects. At one-loop order, additional fermions
only contribute to the vector boson self-energies. Hence, the additional contributions are obvious
from the general form of the self-energy contributions to various parameter shifts as listed in Eq.
(146). It is convenient to represent them in terms of the quantities introduced in Eq. (147):

Observable correction defining Eq.
PruNGe) | AP . (85,134)
Ap = Ap— A+ Ay (100)
s | Ak = BeAp=FAp— A+ A (107)
Lzip AP = Dp+ Ay (108) (211)
Ae = Ao+ A+ A, (100)
My |Ar = Ae—An=Aa-Fap+24, - <% - 1) As | (27,104)
Tyn Al [AF = Ae—Ap=Aa—Ap+ (1+%> Ay (120)
sin O, v | A = Aa— Aay (128,129)
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For a fermion doublet the different terms are given by
o Y
Aa = A5,QrAa = AN, {(1 + Ef) Glyy) — s — 5/3}

= e (-2 -0 (D)o

2
Qi+ D)y - (4Q]—2) mﬁ}

M2
V2G, Ny 1m% mi
Ap = 1672 T4+m 2 " nﬁ%
V2G MW . 3a +3b% — 2b* . m?
- 1 2—a—b)F(a,b
= 1672 2% 0= m3 ;+(@2-a )F(a,b)
V2G, MZN,;
Az = T{ (1+3/2y; (1+yrG(yy))
+aj (1= 3y (1 - (1—yy) Glys)) }
Where Yi = ‘;Mi;, a = m]\;zmQ b m?M_Qm% and
Z w
o) = VIt 0<y<l
Y 2\/y 1arctan \/_1, y>1
F(a b) _ \/Xln 71:31_@, 0<s< (ml — m2)2 or (ml + m2)2 <5
2y/—Aarctan g; (my — my)? < s < (my 4 my)?

with A =1 — 2a + V%, s = M3,

If one or both members are light (¢) or heavy (h), we get the following simple formulae

Aa:{ 3wQ?”ch( M§ —§> . (0
0 > (h)

0 ; (0)
AlZ{ o {1—(2 4\Qh\)< M—;—§>} » (h)

GMQNC
{%(v%aﬁ) 0

Bz = 0 ; (h)

%{ 2 L 2 9 mims _2}; 0if my =ms ; (£0)

m m2
Ap = \/5166,;12ch {mh—l—mg+2m§ lnmgjt---} ; (hO)
V2G,. N, 2 (m2—m?2)2 .
et (o ) . (hh)
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0 ; (hh)

In these approximations terms of order O(a+~ ) and O(« mVQV) (up to log’s) have been neglected.

M2

It is interesting to notice that due to chiral symmetry breaking by masses there is a non-decoupling
effect also for a mass degenerate doublet

Ar(hh) 213
" dsy, 3 (213)
_(hh a Ny 512/1/

At = 8rsy, 3 <1 * CT>

w W

This is very interesting because heavy degenerate doublets give a kind of model independent

contributions, since Aa, Aas, Ap, Ay , Ay = 0 while only A; = 247“2 Ny # 0 counting directly

the number Ny of degenerate doublets.

Given the present accuracy we easily estimate the number N, of mass degenerate doublets needed
to give a one standard deviation effect (we assume sin? Oy, = 0.23):

Measurement 0Ar per doublet accuracy Ny
My, ArltM=13842 x 107* §Are= 0.0180 (0.0040) > 21(4)
sin? © (Azg, A%;’f) AFPM =546 x 107* §AF*P= 0.0078 (0.0043) > 14(7)

in parentheses are given the values which can be reached at LEP in future.

Notice that the “weak isospin conserving” contribution Ay gives a positive contribution to Ar. A
fourth family can contribute at most

Ar® ~ 34 %1073 (Dirac vy) . (214)

Such a contribution would weaken the upper bound for the top mass Eq. (105) by at most 8 GeV.
In contrast all “weak isospin violating” effects give negative contributions to Ar.

If, besides the (t,b)-doublet, additional split doublets exist, the sum of the quadratic heavy particle
effects is constraint by the “m;-bounds”, which then are bounds on m;.¢ defined by

NoV2G,m2y  NovV2G,m? N3G 2 2
pp = NeV2umian _ Nev2Gmi NGy (g 2mims g mi) )
1672 1672 1672 m?2 —m3  m}

d

if we assume that there are no other contributions to Ap (see below). Such split heavy doublets
(my,mg > My) also modify A; to

- 2 (1 —4Q1n E) Q= (Ql +Q2) . (216)

- 247 sy,

Recently, by treating Ap, A; and A, as free parameters, a number of bounds have been derived
for these quantities. The results have been obtained by assuming that new physics shows up in the
vector-boson self-energies only. Before we discuss the results we give a translation for the notation
used by various authors.
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Comparison of notations

Ap AN AV Burgers-Jegerlehner [24]

INV2G,AH0)  —4V2G, 3 Az (M2)  —4v2G, (AL(ME) — 2y A3(M2)) Kennedy-Lynn [44]

aT 4‘;5 ~ () Peskin-Takeuchi [75]
aT Z‘f;; O‘(i";’iﬁ Marciano-Rosner [76]

ahy %h Az % (haw — haz) Langacker-Kennedy [77]
€1 €3 —€ Altarelli-Barbieri [78]

Notice that for additional heavy fermions one has Ap (T') > 0, Ay (S) > 0and Ay ~ 0 (Sw ~ Sz)
and one may perform two-parameter fits in terms of 7' (~ hy) and S (= Sz ~ haz), for example.
Since the Ap (T') bounds are equivalent to the familiar m;-bounds, here, we focus on A; (S)
(equivalent to Ar(" considered above). Bounds on S not only restrict the number of additional
heavy mass degenerate fermion families but any extension of the SM which exhibits a large number
of additional fermions. An example of this kind are the technicolor (TC) models (for which
mg = O(1 TeV)) [75]. Using “scaled up QCD” arguments, TC models with Nr¢ technicolors and
Nrp doublets of technifermions are estimated to yield [75]

Gtechnicolor ~, (005 _ 0.1) NpeNrp +0.12 . (217)

For example, one finds S ~ 2 for Nyc = 4 and one technifermion family. As we shall see such a
contribution is almost excluded by the present experimental data. Constraints on S are obtained
from

LEP data on I'y, I'; and A‘Ifﬂ;’f

pp collider data on sin? Oy, (or My,)

vN scattering data

data from measurements of parity violation in atoms.

An important observation has been made by Marciano and Rosner [76], namely, that the weak
charge which determines parity violation in Cesium is almost independent of T (Ap) and hence of
the top mass. They obtain

Qe (3°C,) = —73.20 £ 0.13 — 0.85 — 0.006T (218)

for the theoretical prediction. This result is normalized to S=T=0 when m; = 140 GeV and mpy
= 100 GeV and no physics beyond the SM is present. The small coefficient of T is due to an
accidental cancellation of terms for the stable Cy isotope. Using a new atomic calculation [79] the
experimental result obtained by the Boulder group [80] is

Qo (°C.) = —71.04 £ 1.58(exp) + 0.88(the) (219)
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where the first error is mostly statistical and the second is the theoretical uncertainty of the atomic
theory. Assuming S=T=0 we have

0Qu = QP — Qe =216+ 1.81 or — 1.38 < 6Q, < 5.70 at 95% CL . (220)
Setting Q¢*? = Q"¢ S is determined to be
S=-27+£20+1.1+£0.16 .
From a global fit to all data Kennedy and Langacker [77] obtain (consistent with “no new physics”)
S=-11+1.7 or §<0.7(1.2) at 90% (95%) CL . (221)

Thus no more than four extra families of heavy degenerate fermions can exist in this scenario.

We close this subsection with a remark on Majorana neutrinos. In models with isosinglet right
handed neutrinos vg; [81] the neutrinos are expected to be massive and to mix like the quarks. Since
the right handed neutrinos have trivial quantum numbers they can be either Dirac or Majorana
particles. In general, additional heavy singlet neutrinos are expected to lower the invisible widths
of the Z. This follows from unitary mixing and the assumption that the vg is too heavy to be
produced. The effective number of v’s then would be N,ff f < 3. A “natural” scenario for a
heavy additional neutrino which does not contribute to I'; has been proposed by Hill and Paschos
[82]. The fourth family vg is assumed to have a Majorana mass M = O(v) besides a Dirac
mass mp = O(my), where v is the vacuum expectation value of the Higgs field and my the
fourth family lepton mass. Mixing of the fourth family with the first three is assumed to be
negligible. Diagonalizing the neutrino mass matrix one has two Majorana neutrinos of mass m;
and my = m%/my. Bertolini and Sirlin [83] found that in this case masses can be chosen such
that the leptonic contribution to Ar(Ap) are similar to the “isospin violating” large doublet mass
splitting effects but with the opposite sign! For arbitrary mp a maximum value

21
A leptons ~ o <mD> 222
"max desyy \Mz/ 9.49 (222)

is obtained for my = m; = mp/3.08. Assuming mp < 300 GeV, a fourth family could contribute
at most

Ar? ~ 1.7 x 1072 (Majorana vy) (223)

and a compensating increase of (1),,4, of at most 36 GeV would follow.
7.2 Additional Higgs multiplets
7.2.1 General considerations

We first discuss the possibility of having py = puee # 1. Doing so, we have to remember the
phenomenological bound

po=00992+0.011  Ref. [26] . (224)

If several Higgs multiplets couple to the gauge bosons the mass formulae Eq. (26) are modified to

2
M2 = % Soo? (Ll +1) - 13)

2

g 206 72
M2 = 72 29712
z 2cos? O, Vistsi

i
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such that

S vf (Li(Li+ 1) = I3)
ivi22[§i

Po =

Here v; =< H; > is the vacuum expectation value (VEV) of the charge zero component of the
multiplet ¢ with weak isospin I; with 3rd component I3;. For a mixture of doublets (I; = 1/2,
|I3;] = 1/2) and Y=2 triplets A = (AT, AT A% ([; =1, |I3;] = 1) py is bounded by

_ vt 1
1 Z P = Pz 2 3
doublets mixed triplets
only only
With v = 30, 07 goupierss Vi = 20i Ui gripers- Notice that Y=2 triplet contaminations change the value

of po below 1. On the other hand Y=0 triplets A = (A", A% A~), yield a positive contribution
v}
App =45 > 0 (225)
d

to the p-parameter. At 68% CL, the bound Eq. (224) restricts the triplet VEV’s by
vy < 34(7) GeV for Y =2(0) .

It is important to notice that since both vy and v; are free parameters, we need two measurable
quantities as input parameters now. One still has the definition

o= 30 (L +1) — 1) = (V2G,)

which fixes a certain combination of the VEV’s, however unlike to the case when pg = piree = 1,
now, po must be considered as an additional free parameter. The consequences for the renor-
malization procedure have been pointed out by Lynn and Nardi [84] and will be discussed in an
Appendix to this Section.

Here we mention that if pg = psrec # 1 one should consequently replace

M2
.92 <92 2 w
sin“ @y — sin“0, = (e =1- 226
w )= (efgf = 1- 20 (226)
TQ 1
Ar — Ar,=1-—
' 'o V2G, M2, sin® O,
in all formulae. If we define Ap, in analogy to Eq. (97) by
B 1
Po = 1= A
we have
, . cos® Oy
sin® ©, = sin® Oy (1 + mApo)
and hence the ezract relation
1 1 cos? O
= 1 A 227
1-Ar 1-Ar, ( +sin2@w 70) (227)
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holds. The experimental bounds mentioned before suggest that deviations from py = 1 can be
treated as perturbations. In the standard approach such “tree level” perturbations may be included
by using

or, in linear approximation, simply by adding

cos? O v?
SAr = —— " Apy, Apy~ ——L: (v? 3 229
r Sin2 ®W Po, Po U37 (Ut < ,Ud) ( )

Notice that a 0.6% Y=2 triplet contamination (v; ~ 19 GeV) yields a +2% effect in Ar, a contri-
bution which could cancel heavy particle effects! The sensitivity to Y=0 triplets is by a factor of
four larger and of opposite sign.

Besides the tree level effects additional Higgs fields would contribute to Ar through loops

Ar = A’I“SM + A,r,e:ctraHzggses‘

For triplets these terms have not been worked out in full detail [84,85]. We expect them to be
small (large) for triplets with small (large) mass-splitting.

7.2.2 Two Higgs doublet model

From a theoretical point of view the case with two Higgs doublets is very attractive. Two Higgs
doublets are obtained in minimal supersymmetric (SUSY) extensions of the SM. Such models also
have been considered as a possible “explanation” for the appearance of very different mass scales
which could be set by the very different VEV’s. For example, if the vector-bosons and fermions
acquire their masses from vastly different VEV’s this could be the reason why m; < My,. Since
now we know that the top is heavier than the intermediate vector bosons this is not a plausible
argument any longer. On the other hand one easily may get m; > m; without having vastly
different Yukawa couplings because upper and lower entries of the fermion doublets must get their
masses from different VEV’s (m; ~ vy, my ~ v1) in order to prevent FCNC’s. Notice, however,
that the experimental bounds on Ar Eq. (105) seems to require a top with a large Yukawa
coupling, not just a large top mass. Anyway, the possibility of two Higgs doublets is not ruled out
phenomenologically and therefore must be studied.

The model is identical to the SM except that two independent doublets

®; = < (vi + m; qfixz')/\/i )

of hypercharge 1 are present. Both doublets in general couple to the fermions. If only one doublet
couples to the fermions the diagonalization of the fermion mass matrix simultaneously diagonalizes
the Yukawa couplings (see Egs. (6) and (7)) and no FCNC’s mediated by scalars is possible.
Obviously, if more than one Higgs field couples to the fermions this is no longer the case. In
order to ensure the absence of FCNC’s mediated by scalars, fermions of a given charge must be
required to couple to one Higgs field only [86]. We assume ®; to couple to the Ts; = —% and P,
to the T3y = +% fermions. This can be achieved by imposing a discrete symmetry &5 — —&,
and up; — —ug; for the up-type quark fields. The scalar potential must share the symmetry
®, — —®,. The most general renormalizable Higgs potential is then given by

Vo= —3 (D7 @) — pi(DF Do) + M (BF P1)? 4 Ao (D] Py)?
A
(D] ®1) (D5 Bo) + Na(BF Do) (DFB1) + T (2 P2)° + (25 P1)°]
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The physical states result from mixing of the fields of the two doublets with vacuum expectation
values v; and vy. By a rotation with rotation angle 5 determined by

tng= 2= o gcp<T (230)

U1 Ubottom

we obtain doublets @, where ®| may be identified with the SM Higgs field with vacuum expectation
value v = 1/v2 + v3. The fields ¢;F and X} can be gauged away and hence represent the Higgs
ghosts p* and .

The new physical scalars are the charged Higgses H* and a pseudoscalar A:

H* = —sinf ¢7 +cosf é5
A = —sinf x1 +cosf xo

while the two physical scalars H and h are given by mixing of 7] and n} with mixing angle o —
such that

H = cosan +sinan

h = —sinan +cosan .
Noticing that the fields

ny = cos(a—fB) H—sin(a—p)h
ny = sin(a— ) H+cos(a— ) h

couple to the gauge bosons identical as the Higgs in the SM, i.e. ZpH — Zyn), ZAn, and
Wtre~H — When,, WTH™n,, we easily find the couplings for H and h, which simply pick
factors cos(a — ) and +sin(a — 8). Similarly, VVH — VV H cos (o — 5) — VVh sin (o — )
(V =W, 2).

Whereas [ only depends on the ratio of the vacuum expectation values a depends on all the

parameters of the Higgs potential, tan 2ac = % (=5 <a<0).

In a two Higgs model the Yukawa couplings may be enhanced by large factors vy /vy or vy /vy. This
is important for the heavier fermions. The relevant couplings read

Hif, f=bt 4 (fszs foms)

M T =b - (s ) )
Aff, f=0bt —75%( ar- tan 8, 75 cotﬁ)

H*bt 5 (e tan 8195 4 oot B AFE) Vy,

The couplings for the other fermions are given by analogous expressions. For example, the coupling
for the 7 may be obtained by substituting m; — 0, m, — m..

In the minimal SUSY model the masses of the extra Higgses at tree level are severely constrained
by the following mass- and coupling-relationships:

mi = My, +m?
1
my, = 5 (M% +m5 =+ \/(M% —m?)? 4+ 4M2m? sin® 26)
m% + M3

tan(2 = tan(208) /5
an(2a) an(203) Ry
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m2 M2 —m?

.9 . _
sin“(a = 5) m% M2 +m? —2m?%

2 2 2
2 my Mz —mj,
—p) = Lh . 232
wose=b) = R MG+ — 2 (252)

Only two independent parameters are left, which we may choose to be tan 8 and my4. In Fig. 28
we plot the dependent parameters as a function of my4 for various tan j.

my (GeV)

My

Figure 28: a) the scalar masses my, my and b) sin? (a — 3) as a function of the pseudoscalar mass
m 4 for various values of tan f.

In this model one scalar is always lighter than Min(My, m4), the other is always heavier than
Max(Myz, m4). The charged Higgs must be heavier than My . Notice that the solutions for my,
my and sin® (o — ) are symmetric under the replacement tan 3 <+ cot 3. The angles o and 3 and
the Yukawa couplings Eq. (231) do not share this symmetry. Large mass-splittings between the
I3 = +1/2 and I3 = —1/2 states are forbidden such that no large contributions to the radiative
corrections are obtained in this case (see below).

7.2.3 Present bounds on scalar masses

Experimental bounds on scalars masses [1] depend on the parameters of the two doublet model. The
bound on the lightest scalar (corresponding to the SM Higgs) gets weaker due to the suppression
of the production rate by

(Z = hff)
rsM(zZ — Hff)

= sin? (a — f3) .

Thus one may loose the bound Eq. (11) for the lightest Higgs denoted by h here. In the minimal
SUSY model the constraints Eq. (232) imply sin? (o — 8) > 0.5 for my > M, and the bound
essentially remains valid. The reason is that most of the mass bounds are primarily a matter of
kinematical accessibility, rather than a problem of rate. Notice that a corresponding bounds on
the pseudoscalar mass m4 cannot be obtained via Z — Af f since this decay is not allowed by the
absence of a ZZA coupling at tree level.

Fortunately there is a complementary Z decay mode Z — Ah available if m4 + m, < My. This
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decay has a branching fraction

['(Z — hA) 1
sM(Z —vi) 2

where A = \(1,m3 /M2, m%/M?2) is the two body phase space function \(z,y, z) = 22 +y* + 2% —
2xy — 2xz — 2yz). Notice that the couplings for the decays of the scalars into fermion pairs depend
on the mixing angles o and 3, according to Eq. (231). Bounds therefore are not symmetric under
tan [ < cot 3.

Present bounds usually are given for the minimal SUSY scenario, assuming that the mass-coupling
relations Eq. (232) hold. If ms > My the SM bound Eq. (11) applies for the light scalar. For
ma < My we have my, < m, and cos® (a — ) > 0.5. Notice that m,4 ~ mj, requires tan 3 > 1 or
tan 3 < 1 which implies cos? (& — 3) ~ 1. The resulting mass bounds obtained from a study of
the decay Z — hA are the following:

my > 28 GeV, my > 30 GeV for tanf <1

my > 34 GeV, my > 43 GeV for tanf >1
mp, ~ my > 40 GeV for tanpg <1
mp ~ my > 42 GeV for tanpg >1 .

(233)

We finally consider the charged Higgs. At LEP a charged Higgs cannot be singly produced by
t — HTb, because, given the bound m; > 89 GeV, a top quark connot be produced. Pair
production by Z — HTH~ is possible, however. The partial with for this Z decay channel is

V2G, M} am? >
IN(Z - HTH )= "2 (1 -252) [1 - = :
487 W M?2

Since the Z rates are no limiting factor the charged Higgs search is possible right to the kinematical
limit ~ 45 GeV. The partial decay widths are

LHT = (Ty) = % tan? Bm;
- 2
D(HT = wd;) = ?Mgi;w(mﬂ (cot? Bmg + tan® fm3)

for leptonic and hadronic decays, respectively. The experimental limit slightly depends on the

branching fraction Br(H — Tv,) ~ % ~ ;:32 tan? 3:

- { 40 GeV Br(H — 1v) =0 (234)

45 GeV Br(H —»T1v)=1 .

These limits will slightly improve towards My/2 during the LEP1 run time. For substantial
improvements we have to wait for LEP2.

7.2.4 Virtual effects

The case of an additional Higgs doublet has been analysed in detail in Refs. [87,88]. The leading
heavy particle contributions as usual show up in the p-parameter Eq. (85). A Higgs-gauge boson
loops yields

2
My o

n_ 3V2G, My |d?
- M%’CW)

A
p 1672

fu(
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with

faloy) =2 <1n(y/x) N Inx )

y—r  y(l-x)
when the coupling is d times the SM HVV coupling.

<>
For a scalar loop (masses m; and my) with coupling iaV,¢] 0" ¢, the contribution is

2

a
I15(0) = 1 fs(md, ) (235)
with
1 m2m? m?
2 2y _ Lo o2 2\ _ 1772 iy
fs(mi,m;) = 2(m1 +m3) m:—mi mi

The total Higgs contribution is then given by

ApH'o9s = V2G, {3M5V [sin2(a ) fH(m%L ci) + cos?(a — fB) fﬂ(mfH ; )]

1672 @’ @> Cw
+cos®(a = 8) (fs(mZ,m}) + fs(m%,m3) — fs(m?,m?))
+sin’(a — B) (fs(m my) + fs(mi,m}) — fs(mi,my))}  (236)

Without loss of generality we may assume that m;, < mpy. Thus h corresponds to the minimal
SM Higgs. Different observables are affected as follows from Eqgs. (211). Typically, for large weak
isospin splitting (excluded in SUSY models) the change in p is given by [88]

V2GL, 2
16“.2# my for My 2> Mpeutrals

Apti99s ~ (237)

V2GL, 2
1671-2# mneutrals for mneutrals >> m:l: .

Assuming mi= 200 GeV (> Myeuiras), for example, we would obtain a shift §Ar ~ —1.4 x 1072
which would tighten the upper bound for m; Eq. (105) by 36 GeV.

In Ref. [89] it has been found that there exist windows mpy ), < my < my and my < my < mpy,
(which are excluded in SUSY scenarios) in which the scalars give a large negative contribution to
Ap. The maximum value is attained at the minimum ¢ ~ 0.562 of the function f(c?) = 02+% In ¢?
where f,,;, >~ —0.216. The result

A Higgs __ \/EG;L fmzn

i = ey i~ T4 x 1078 GeV P md (238)

is obtained for the cases

e my = my = 0, sin’(a — B) arbitrary and ms = cmy

e my, =my, my =0, sin’(a — 3) arbitrary and m+ = cmpy

my, = 0, my arbitrary, sin2(a —p)=0and my =cmy

e my =0, my arbitrary, sin?(a — 3) = 1 and my = cmy .
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As an example, choosing ms = 200 GeV and my = 356 GeV (> my ) yields Ar ~ 9.6 x 1073
which would weaken the upper top mass bound by 21 GeV.

Large effects are expected from extra vertex corrections to the Zbb vertex, and the Z7~ 71 vertex
also should be inspected. From Eq. (231) we learn that if tan 5 = O(1) only the couplings
proportional to m, are important. If tan 8 > 1 the m, (m,) Yukawa couplings are enhanced and
may give rise to large non-standard effects. We distinguish the two cases:

i) tan 8 ~ 1 (disfavored by minimal SUSY)

Only the HTbt vertex is of importance here. It yields a negative contribution

4 a (my\?
AQHD) o 2 o2 _<_t> 9
p 300t g - \ar, (239)
and affects the Z-width, AI'(Z — bb) < 0, according to
V26, M (1 + AP(H+)) Ty (1= 15) - (240)

ii) tan > 1

Here besides the H™ also heavy neutrals can give large effects of either sign. Lepton universality
may be violated in I'; /T, by effects proportional to m2. These are below 1% and may be positive
(my large) or negative (my large).

7.3 Extra Z Bosons

The existence of additional neutral gauge-bosons is predicted by most extensions of the standard
model gauge group. For a general investigation of effects from extra neutral gauge-bosons we refer
to [70-74,90]. Here we only consider the simplest case of one extra Z-boson Z’° which mixes with
the standard model Z denoted by Z°. It is supposed that the particles of the Standard Model
with 3 families have the normal SU(2), ® U(1)y transformation properties such that

Lom = efimaA¥
g : -em ~ T
Lyc = M(Jm—sm?@ggu )20+ ], 2" (241)

with
A, = sin? O Wsr, + cos? ©yB,; Zoy = cos? O Wsr, — sin? ©,B,
and (4 = HE%)

]ﬁm = Jyput+Jy

Ju = J?%(H—?L + 1L, YR)f (242)

depending on the specific extension. SU(2); symmetry requires queL =Y., ffuL = fde and we
shall assume generation universality ffuL = }N/;L, f/;L = f/dL etc. Below, we shall restrict to the
case of an extra U (1)y of most general Fg origin where the symmetry is broken according to
Es = G®Up GDSUB).®SU2),®U(l)y with Z° = cos 2, + sin $Z;. Then

?L,R = CoS BQfR + sin BQ%R (243)
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with

Q)i = \/g fO’l" (Vea € ad)L
QY = —%\/% for (e" u,u,d)r )
Q% = %\/g fOT (7/5,6 ae+?u’ﬂ’d’d)l’

and Q(fr) = —Q(fr)."

Due to mixing the mass matrix is of the form

1 oy [ Mo A? A
_ 2 +1A7— - 0 0 20
Lonass = MWW=+ 5 (2°,2°) ( A, ) ( 70 ) (244)

and can be diagonalized by

Z cos sind ZY
< A ) - ( —sinf cosf ) < Z" ) ' (245)
As a consequence the following effects are obtained

e a reduction of the Z mass by mixing (see below)

Mjcos® 0+ Mz sin = Mz,

My sin® 0 + M, cos®0 = M,

(MZ, — M2) sinfcos = —A® (246)
e a modification of the Z-couplings by mixing:

gcos Oy

Jzu = cos0Jzo, +sin 6 Jzn,

Sz = cos0J 0, —sind J 70, (247)

gcos 9,

e 7'-exchange effects, for example, through the mixing amplitude

99 . 1 1
sin0.JYJ 7 — .
cos O, nz Z“(s—M% s—M%)

In general the parameters e, My, My, sin©, =e/g, My ¢ and sin @ are free. More interesting is
the constrained Higgs case where all Higgses are in doublets and singlets. Generically we consider a
model with two doublets (¢9, ¢7) and (43, ¢9) and two singlets ¢} and ¢ with vacuum expectation
values < ¢; >= v;/y/2. The mixing angle is then fixed by

A? = 2MZosin® O, (Viv} — Vou3) Jv? = /(M2 — MZ) (M3, — M3)

, - N2
Mé,o = 4MZ, sin® O, Z (Y;vi) Jv? (248)
)
HSpecial cases are the symmetry breaking patterns
Zy : Es — SO(10) — SU(5) @ U(1),, for =0
Zy - FEs — SO(10) @ U(1)y for B=m/2

~Zy: Eg— SU3).@85U2)L@U(l)y ®U(1), for B=m—arctan/3
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where v? = v? 4+ v2 and My = gv/2 and we have

2 2
Mz, — Mz
2 27
Mzr_ Zo

tan? 0 = sin = F\/ (M2 — M3) /(M3 — M3) (249)

and
M?
Mzo = —"—. 2
2% cos? O (250)
due to standard model mixing with sin ©, = e/g. This implies

My < Mzo < My

and hence
MEV Mgo 9 M,
— — =1 0 —=% —1]>1 . 251
po MZcos?©, M3 sin M2 - (251)

This tree level modification mimics heavy particle effects.!? Since the Higgs doublets have some
given hypercharge, in our generic example,

Y, = —g (cosﬁ\/g—l—sinﬁ\/g) c Y, = % (cosﬁ g—sinﬁ\/g)

The quantity

1 Apo
2sin? 0, py

v

VT (l—f) =+ i
x 15 2( 5) U%—FU%

<1

0<¢&=

is fixed for a given model. This is called the Higgs constraint and determines Mz in terms of sin 6
for given ¢ and sin®©,. Notice the bound min (Y1, —Ys) < z < maz (Y;,—Y3). Since vy is the
VEV that gives rise to the top mass, it is assumed that 0 < ¢ < 0.5 in the Higgs constraint.

In cases of interest, mentioned above, there is a second constraint coming from the unification
condition if the group factors merge into a simple Lie group at some higher energy scale. Then g
is related to g by

g=gtan©,VX; A= 0(1). (252)

The constraint holds with A\ = 1 if G breaks directly to Gy @U(1). The effects from an extra U (1)
boson in Ar has been investigated in Ref. [91]. Since py # 1 at tree level a natural renormalization
scheme is the one using sin® ©, Eq. (74) which allows for a smooth limit

) M2
lim cos ©, = —V;/
0—0 MZ

12The analysis applies also to the left-right symmetric model (LR), which is characterized by the gauge group
SU(2)r ® SU(2)r, ® U(1)p—_r. In this case

2 o 1/2
1 Jdr Cg
Ton = Jun = ¢ Jun = 5 Jn-i C‘((g—) ?‘1>
g

and § = gtan©,. Mixing between the charged gauge bosons Wf and Wj%t (mixing angle #*) may change the

physical W mass, the Fermi constant \/iG# = ﬁ cos? 6+
w

(251) and p* = 1 + sin® 65 (MZ,, /M2, — 1). We assume the right-handed neutrino to be heavy and mixing in the
charged sector to be negligible such that the charged sector for our purpose looks the same as in the SM. In the

and pg, which becomes pg/p* where py is given by Eq.

minimal LR model with gr = g1, we further have sin ~ , /c2 — s2 (Mg /Mz)?.

88



and such that Eq. (27) holds true with the replacement

Ar — ATy = Ary+ (B) 2 (253)

where (B)z is the contribution from the W —Z’ box diagrams contributing to u-decay. '3 Explicitly
30% ~.p Inx

B)y = ——=(Y 254

By = —L R (254)

2
Ya A . 5 Inz
" 167 cos? Oy (cosﬁ * Smﬁ\/ 2_7) r—1

MZ,

where x = T With the general constraint (cos 3 + sin 31/5/27)? <1.185 one obtains |(B)z/]| <
1.6 x 1073, 1.0 x 1073, 0.7 x 107 for A = 1 and Mz = 100, 150, 200 GeV. For the Z, boson

from Eg — Ssm ® U(1), one has cos f = /3/8, sin f = —/5/8 and hence for the same values of
Aand My :|(B)z| < —1.0 x 107, —0.6 x 1074, —0.4 x 10~%.

In view of the expected experimental precision of LEP experiments, 0 Ar ~ 0.004, these contribu-
tions to Ar are likely to be negligible. As a result

. Aj 1 -
sin @, = M—%m AT, = ArtM (255)
such that sin?0, ~ sin”? O™ when calculated in terms of o, G,, and My .
However, since py > 1, the prediction of the W-mass is affected as follows from Egs. (101) and
(227). In linear approximation we get

2
SAr — _ cos Ow

2
Apo, Apy=sin?6 (MZ’ — 1) . (256)

sin? Oy M3

When calculated in terms of o, G, and M the weak mixing parameter changes according to

1 4 A2 1 s2c? Ap
s 2./ 0 .2 g-g 0
O =—<1—,/1-— ~ 0,--—27 257
I { \J poM2 1 — A7, } S P cz—s2 po (257)

where we used the notation sin® ©, = s2,¢2 = 1 —s2. The W mass is given by M, = poM7 cos® ©).

Also the tree level modifications of the Z-couplings through mixing can be tested at LEP. Mixing
affects the Z-width and the interference term as indicated in Eqgs. (175) and (176). The widths
now read

Iy = % {cos2 (v + a3) + 2 cosOsin @ (vpv} 4 agal) + sin® 0 (v + alfz)}

(14 dgep) (1 + dgcp)

where sin 6 = sin sin ©, v/\. Here we have used Eqgs. (247) and (252). The new couplings are
parametrized by

(258)

/A 3 : 1 /5 r !

a, = cosp \/; + sin ﬁg\/g v, = al,

a, = cosﬁg\/g—l—sinﬁ%\/g v, o= cosﬁé\/g (259)
I 2 /3 : 2 /5 r

a, = cosﬁg\/g—l—smﬁg\/g v, = 0
/ / /! /

g Qe Ud Ve

13Contributions like the extra vertex corrections which vanish for # — 0 have been neglected. Also neglected are
the contributions to the vector-boson self-energies of the extra particles present in such models
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Treating the Z’ effects as perturbations we obtain
A, =T =Ty = AT} + AT (260)

with

4 522
A% = Apy M <1+ ity 2“2>
vf—l—afc — 8

(vaf + afa})
vj% + afc

AT} = sinf sin®©,v/A T3 (261)

The second term contributing to AFS’C is ‘ﬂ;sQ
Eq. (257).

Given the “corrected” witdhs, which also determine other quantities like I'z, 07°®* and Rpaq, one
may directly derive bounds on the additional contributions using the results presented in Tab.
7. It shoud be noted, however, that the effective cross-section Eq. (172) is also directly affected
through the mixing term Eq. (175) which shifts the Z-peak according to Egs. (179) and (181).

New Z"’s also modify low energy NC quantities. For example, in v,e scattering additional contri-
butions may be absorbed into effective Zee couplings v"¢ = (£7¢ + €%5)/2, a*¢ = (' — &%) /2 for
which one finds

Aepp = 5LR_5€A1€
22
2 —s2
+  sin @ sin? @g\/X (ve £ ae)(v), +al) + (v. £ a,) (v, + a,))
M2
+ sin® O A —Z(v. £ al) (v, +d)) . (262)
MZ/

Similay formulae are obtained for v /N scattering.

At present there in no phenomenological evidence for new Z’’s. The direct bound on the Z’ mass
Mz > 300 GeV (263)

coming from the pp colliders (CDF in particular) is quite model-independent [92]. On the other
hand, signals which could be seen at LEP and in low energy NC processes are rather model-
dependent. Fortunately, LEP and NC data provide complementary bounds on the mixing angle 6.
The Z resonance observations are mainly sensitive to mixing. Typical (90% CL) allowed regions
for £, = —0v/X and lower bounds for My are the following [90,92,93,94]:

model 6] & (0) (radians) My (GeV)
CDF | electroweak data
X 0 —0.015 < & < 0.005 | 340 290(600)
W 7/2 | —0.004 < & < 0.021 | 350 250(550) (264)
n | —arctan /3 | ~0.024 < & < 0.075 | 320 110(330)
LR 0 —0.004 <6 <0.020 | 360 270(800)

In parantheses are given the lower bounds for My when the Higgs constraint is applied. Very
little room remains for &, outside the “central” range |8 + arctan \/g | < 30°. The best place to
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put model-independent bounds on the Z’ mass are the future hadron colliders by looking for direct
production. If such gauge bosons would be found they would be a strong indication for unified
gauge models.

Finally, we mention Z’ contributions to parity violation in atoms. For an atom with Z protons
and N neutrons, the weak charge is defined by

Quw = —4a. {v, 2Z+ N)+v4(Z+2N)} (265)
It is shifted due to pg # 1 by
s2c?
2z = am (@2 442302 ) (260
€9~ 5

where the second term is due to the change of sin®©,. The change of the Z couplings due to
mixing (to linear order in sin @) yields

AQS, = sin0sin? ©,v/X (al/a QM — da {v], (27 + N) + v} (Z +2N)}) . (267)

Finally, the contribution from direct Z’ exchange is given by

, M3
QY = —dasin? OATZ {v], (22 + N) + vy (£ +2N)} (268)

Z/

where we have used Eqgs. (247) and (252). Altogether, we have
AQ, = Q, — Qi = AQY + AQL + AQT (269)

which is constrained, for Z=55 and N=78, by Eq. (220). Again the bounds are very model
dependent and will not be reported here [95,96]. Notice that the two terms contributing to AQ?,
essentially cancel for Cesium: We find AQ? ~ 0.1 Ap, for sin® ©, = 0.23. This result agrees with
the observation of Ref. [76] that the weak charge of Cj is largely independent of Ap. However, we
neither agree with Ref. [95], where the second contribution to AQ?, is not taken into account, nor
with Ref. [96] where the second term has a different coefficient of opposite sign.
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7.4 SUSY particles

Supersymmetric extensions of the Standard Model require the existence of new superpartners for
all known leptons, quarks, gauge and Higgs bosons. They are called sleptons, squarks, gauginos
and higgsinos, respectively. In addition there must be at least one extra Higgs doublet which also
has its SUSY partners. We restrict ourselves to a discussion of the minimal supersymmetric SM
(MSSM) which usually is thought as a renormalizable low energy effective theory emerging from a
supergravity (SUGRA) model [97]. The Lagrangian exhibits global supersymmetry softly broken
at a scale Mgy commonly taken to coincide with the “new physics scale” Ayp ~ 1 TeV, where
the SM is expected to loose its validity. If one assumes the SUSY particles (sparticles) all to have
masses below Mgy sy, then light sparticles of a few tens of GeV are expected in the spectrum. The
MSSM scenario is characterized by the following features:

e the gauge group is the SM gauge group and no new heavy gauge bosons besides the W and
7, exist;

e there are no new matter fields besides the quarks and leptons and two Higgs doublets which
are needed to provide supersymmetric masses to quarks and leptons;

e it follows that gauge- and Yukawa-couplings of the sparticles are all fixed by supersymmetry;

e in spite of some constraints, masses and mixings of the sparticles remain quite arbitrary.
In addition one assumes that

e flavor- and CP-violation is as in the SM, namely coming from the (now supersymmetrized)
Yukawa couplings only.

This implies that at some grand unification scale My there is a universal mass term for all scalars
as well as a universal gaugino mass term, i. e. the SUSY-breaking Majorana masses of the gauginos
are equal at Mx. A further assumption is that

e R-parity, even for particles, odd for sparticles, is conserved.
This is a strong assumption implying that sparticles must be produced in pairs and that there

exists a absolutely stable lightest supersymmetric particle (LSP).

Although local gauge symmetry and supersymmetry constrain the structure of the models there
are many additional free parameters like the sfermion masses and mixing parameters and the
gaugino-higgsino masses and mixing parameters. The MSSM parameter space is the following:

7.4.1 MSSM parameters
i) Higgs sector

The parameters of the MSSM Higgs sector are the same as the ones for the two doublet Higgs
model considered in Sec. 7.2 with the SUSY constraints Eq. (237). The tree level mass constraints
imply m;, < My |cos2(5| < My and the upper bound is saturated at 5 = 7/2. If the two Higgs
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VEV’s are equal, v; = v, and thus tan 8 = 1, then m; = 0. The CP-odd scalar mass m, is a key
parameter. The limiting cases are

1) ma — 00
m4 — My
my — Mg (270)
mp — My |cos20]
sinf(a—f) — 1
and the light Higgs h couples as in the minimal SM.
2) ma — 0:
m+ — MW
mpyg — MZ (271)
mp, — 0

sin(a — ) — sin?283 .

From the tree level constraints we would conclude that tan 3 ~ 1 is excluded by the Higgs mass
bound my;, > 49 GeV from LEP. Using Eq. (237), and assuming that the solution with tan g =
Vtop/ Vbottom > 1 1s realized we obtain

tan > 2.38 (1.82) if my <1 TeV(o0) . (272)

The assumption made is suggested by the fact that m; > my, which lets 100k vtop/Upottom < 1
unnatural. For this solution we have

1 —tan?p
PRI <
1+ tan®

Another consequence of the Eq. (237) is the following. Since at LEP2 one should be able to detect
a Higgs up th my ~ Mz the MSSM could be ruled out if no Higgs is found. Recently, it has been
discovered [98] that radiative corrections to the mass relations Eq. (237) may be huge if the top is
heavy.!* The conclusions thus must be modified accordingly. The major impact is that the bound
my, < My gets changed to the much weaker bound my, < 1.2 (1.6) M if m, = 150 (200) GeV. For
my >~ 100 GeV the shift is about 2 GeV. MQ =1 TeV has been taken here.

cos 23 = 0. (273)

“Haber and Hempfling [98] derived an expression for
Am} =mi, — M2

by calculating the shift for tan 8 = oo (8 = 7/2) where the bound myo = My is saturated, and correcting for finite
[ at tree level:

1 .
Am? = (Ami)ﬂ:ﬂ2 ~3 (\/(m?4 — M2)2 +4m% M2 sin?28 — (m? — M%)) )

The shift is given by the difference of the h and Z self-energy functions (with tadpoles omited) minus a tadpole
contribution

(Am3) 1y = Re {T (M) = Tz7(M3)} — %Th(o) .

This correction turns out to be large if Mz < m; < Mg. If one neglects t7, — tr mixing the leading term is given

by
302ma M2
Am3 ~ g My ln<—Q + -

202 2
8m2 My, m;

The same leading behavior is obtained for tan8 = 1 (8 = 0) where myo = 0, so that this kind of shift looks to be
universal.
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ii) Sleptons and squarks sector

The diagonal masses of the sfermioms are given by

msz = M%L + mfc + M cos 23 (T35 — Qfs%,v)
my, = Mg +mj+ Mjcos28 Qysiy (274)
where
Mg :
MFL:{Mg ; }c: u,d Mp = Mg, Mg, Mp 5 f = e,u,d

are the soft SUSY-breaking masses. In particular, this mass interdependence implies the constraints
(setting m?, m2 — m?2 ~ 0)

mZ, —mj =mi —mi =—Mj cos2f (275)

€L v, dy,

for the mass splittings of the SUSY partners of the light fermions. In addition L-R mixing terms
Amm ( fr 7 fr+ fr 5 fL) are present where the mixing parameters are of the form

AY) = mys (A — pcot f) (276)

and A; is another model dependent soft SUSY breaking parameter. For the stop sector neglecting
the bottom mass (m;, = 0) the mass matrix is of the form

7 i) ( m%L +m? + M3, cos28 miA; ) ( i )

my At mth t*Rc

such that the physical masses are given by

1 2
mtgl,z =3 {mgL + MZ +2m] + My, cos2f3 (1 + 3 tan” Oyy)

2
:F\/(mgL M + Mg cos 23 (1 — 3 tan? Oy ))? + 4m Az} (277)

with m; < m;, and the mixing angle is given by

2 2
m; —mg m? — M, cos 23

tan ¢, = (278)

my Ay

where mgL is the physical mass of the left-handed sbottom. Notice that in the limit m;, = 0,

considered here, the b, does not mix with the bp.
For simplicity we will assume Mg = My = Mp >~ mg where mj; represents an average squark mass.

Family mixing will be neglected here.
ii) Chargino-neutralino (gaugino-higgsino) sector

The chargino-neutralino sector is given by the SUSY partners of the gauge bosons and the Higgs
scalars. The mixing of the states depends on the following parameters:

94



tan 3

1 the supersymmetric higgsino mass

M the SU(2), gaugino mass

M’ the U(1)y gaugino mass

e my the SU(3). gluino mass .
The two chargino mass eigenstates %i and X3 (charged Dirac fermions) are mixtures of winos W
and higgsinos ¢ and H*. The mixing is described by the 2 x 2 matrix (in the (W™, HT) basis)

M V2 My, sin B
< V2My, cos 3 o ) (279)

The neutralinos x; (i = 1,2,3,4) (neutral Majorana fermions), labeled in order of increasing mass,
are obtained by diagonalizing the 4 x 4 mixing matrix (in the (B, W3, h, H) basis)

M’ 0 —Mycos Bsin Oy, My sin 5 sin Oy,
0 M My cos fcos Oy —My sin 5 cos Oy, (280)
—Mzcos fsin©Oy My cos 5 cos Oy 0 — I
My sin fsin Oy,  — My sin 3 cos Oy — 0
Usually a grand-unification assumption
) ) «
M =-tan®*Oy M = - —————mj, 281
3 anew 3 cos? Oy ay Mg (281)

is made which holds in supergravity (SUGRA) scenarios.
7.4.2 Mass limits for sparticles

The fact that no SUSY particles have been seen until now may be expressed more quantitatively
in term of lower bounds for sparticle masses [4,99,100]. These limits usually refer to the MSSM
and the assumption of R-parity conservation. Part of the limits are direct search bounds, some
derive from the fact that the partial Z widths are rather close to the SM prediction and finally
there are limits which derive from the mass relations Eqs. (237) and (272-281).

An important bound was obtained at CDF for the gluino mass [4]
mg > 150 GeV (282)

which implies bounds on M and M’ through the unification condition Eq. (281). Bounds from
UA2 and CDF [4] for the squark masses are given by

mg > 90 GeV . (283)

The sneutrino mass is constrained by the absence a the corresponding contribution (I'; = 1/2I'%M
if my < Mz/2) to the Z width, yielding

my > 29 (39) GeV if only one light & (if three light ©'s) (284)

is (are) assumed. For left-handed sleptons direct LEP searches [99] yield the limit m; > 43 GeV
. Here, using Eq. (275), a stronger bound follows from the sneutrion mass bound

mg, > 73 (65) GeV if my <1 TeV (00) . (285)
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Since the right-handed sleptons are not related to sneutrino masses and a massless m; would
contribute 17.3 MeV only to the Z width only direct search limits can be given. LEP searches give

mg, > 41 GeV L=e,u,T . (286)
Finally, bounds on chargino and neutralino are as follows: For the lightest chargino Z width bounds
imply
mgx > 45 GeV . (287)
Within the MSSM such a limit yields a bound

M+ —Myo0 > 13 (5) GeV (288)

X

if we assume m; < 1 TeV (5 TeV). Bounds on the neutralinos are more difficult to obtain. For the
lightest neutralinos only bounds deriving from the MSSM assumptions, the unification condition,
in particular, give restrictions. They are very weak m,; o, m o > a few GeV, however. A bound

myo > 61 GeV (289)
follows from the Z width [100].

7.4.3 Virtual effects from sparticles

For the minimal supersymmetric extension of the Standard Model one-loop radiative corrections
have been calculated by several authors [101-108]. We concentrate our discussion to the contribu-
tions of SUSY particles to the p-parameter. The contributions from the Higgs scalars, the sfermion
scalars and the gaugino-higgsino fermions may be considered separately

ApUSY = Apf 4+ Ap™F + ApPH (290)

(a) Higgs contributions

The two doublet Higgs contribution Eq. (236) to the p parameter is now constrained by the mass
relationships Eq. (232). From the limiting cases Eqgs. (270) and (271) one finds

2G, M2c3 In c? 1 In c?
ApH:M{3008225 ( a4 ——) —sin? 23 a4 +1} ;ma— 0 (291)

1672 -1 & c—1

which maximizes Apf for cos?2 = 1. On the other hand

V26, M2c?
Apfl ~ 12—7r2ZW 3 fu(cos?283,c%) ;s ma — o0 (292)

minimizes Ap? for cos? 2 = 1. As a result the total contribution from the Higgs sector is bound
by (for s, = 0.22)

—3.1x107* < Apf <36 x107* (293)
beyond observability at LEP experiments. This is much smaller than the SM Higgs contribution
Apl ~ =22 x 1072 for my ~ 1 TeV (294)

and also is in contrast to the large effects Eqs. (237) and (238) possible in two doublet models of
non-SUSY type.
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(b) SUSY partners of the light fermions.

We first should mention that SUSY partners of fermions occur in pairs, one sfermion for each
helicity. The contributions of the scalar sleptons and squarks to the vector boson self-energies are
given by Eq. (235). Notice that fg(m?%, m3) vanishes for equal masses. Hence only pairs of fermions
with different masses contribute. Two fermion doublet partners yield a p-parameter contribution

sfermion double \/7G NC ~ ~
s ppfermion doutet _ YR p (i) (295)

which is half of a corresponding fermion doublet contribution.

The SUSY partners of zero mass fermions cannot give large contributions. The spartners of
the right-handed fermions do not contribute, since (in the zero fermion mass limit) they do not
couple to W= and Ws. For the left-handed fermion spartners gauge symmetry requires the SUSY-
breaking masses to be equal such that mass differences can only be due to the gauge symmetry
breaking which leads to the mass differences Eq. (275). We consider the sleptons first. The largest
contribution can be obtained if all sneutrino masses vanish and the slepton masses are equal to
the W mass and if we assume, unrealistically, that right- and left-scalars give equal contributions.
Then

sleptons < \/iGﬂNf

A
p - 1672

~21x107% (N;=3). (296)

Taking into account the actual mass limit for the sneutrino mass Eq. (284) this bound improves
to

Aptlertons < 1.1 x 107% (Ny = 3,m; > 39 GeV) . (297)
For the squarks a similar result is obtained

Ap™H5F < 0.8 % 107 (mg > 90 GeV) . (298)

(c) SUSY partners of t and b.

Taking into account the f; — #5 mixing one obtains [105]

V2G,
1672

Apg’i’ {cos (btfg(mtl, I?L) + sin® (btfg(mi, mgL) — cos? ¢ sin® qbtfs(mgl : mé)} (299)
where the masses and the mixing angle are given by Eqgs. (277) and (278). Again some limiting
cases best illustrate the kind of contributions one may obtain. The key parameter is the soft SUSY
breaking parameter m = Mz of Eqs. (274) and (277). Barbieri and Maiani [101] have summarized
the result as follows:

e Squarks give a significant only if the associated fermion doublet splitting is greater than m.
For the th-doublet one finds (m;, = 0)

\/§G,uch

apr = X

; (mg>m) . (300)
This contribution is equal in size with the top contribution itself and thus the top mass

bound would be scaled to smaller values by a factor v/2 if m is small. Again, for simplicity,
we have assumed the right- and left-scalars to be degenerate and give equal contributions.
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e The other limiting case we have for m large (assuming tan 8 = 1 for simplicity) yielding

\/iGuch @

A stop —
P 16723 m?

(1—2a+ gaz) ; (my < m) (301)

where a = A;/2m; is taken to be of order O(1). The truth lies somewhere between the two
cases. One may identify m with the average squark mass m; obeying the bound Eq. (283).

A global analysis by Bilal et al. [109] yields the top mass bound

m; = 131133 GeV, sin? Oy = 0.22727050% (302)
for mgz = 150 GeV and tan = 1.3 which compares with the SM value

m; = 135721 GeV, sin® Oy = 0.227173955 . (303)

For lower values of m; the changes of the upper bound is more significant. For mg = 80 GeV the
upper bound decreases to 143 GeV while the lower bound remains essentially unaffected.

(d) Gaugino-higgsino contributions.

Charginos and neutralinos are fermions. Their contribution to the p-parameter may be evaluated
using the following functions. A fermion loop with masses m; and my and couplings ¢, (v —
ays) Y2 VH yields the contribution [101]

I(0) = g {105 (ma,ma) + al* fp(=ma, ma) | (304)
with
A4 mi 4+ mi — 2mimy (m? +m?2) | m?
_ 2l 9 _my 2 1M (M 2) M
fr(my,me) = (Mg —my)”In g m1ms v n "

Here A is a cut-off which cancels in physical quantities. In principle, it is straight forward to
write down the general expression for Ap = Ty (0) /M3, — 1z(0)/M% in terms of the chargino and
neutralino masses and the Wiiﬁijo the Z)Zﬁ){f and the Z)Zioijo couplings. While it is easy to
diagonalize the 2 x 2 chargino mass matrix analytically the diagonalization of the 4 x 4 neutralino
mass matrix is easier to do numerically.

The largest contribution to the p-parameter from this sector is obtained if the soft SUSY breaking
parameters vanish. In this limit a fairly simple result follows [105]

V2G, ME, {_ N cos? 213

A GH —
Prmaz 1672 2,

8 cos® Bcty — 1 + 4s3y, — cos 23

2 52
2 120 5) In (2 cos® Beyy)

8sin® Bk, — 1+ 4s%, + cos 23 }
- In (2sin? B2 305
C%/V _ 1/(2 Sln2 5) ( W) ( )
which for Myx > 45 GeV leads to the bound
ApPH <14 %1073, (306)

So far we only considered the universal vector-boson self-energy contributions. There are additional
process-dependent vertex and fermion self-energy corrections coming from the gaugino-higgsino
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sector. These may be of the same size and of either sign as the universal corrections. In Ref. [106]
these effects have been investigated using the renormalization scheme with a, G, and sin? Oy, as
input parameters. For the range 0 < M < 250 GeV and 0 < |u| < 200 GeV in the gaugino-higgsino
parameter space, taking into account the phenomenological constraints for the SUSY masses, the
following results have been found for tan § = 2 (8):

ApoUSY = 42 x 103 to —2.5x 1073
SMEYSY = —100 MeV to — 150 MeV (307)
SMZUSY = —150 MeV to — 250 MeV

and for most of the above (M, u)-window. By a factor 1.5 larger values are obtained near to the
rim of the allowed regions. The shift in My, for fixed o, G, and M, may be obtained using the
relation

2 2 2 2

Ar = W —
T T\ T Mg

and Eq. (101). One typically obtains (estimated from the Figures of Ref. [106])

(M, i, tan B) | SME7SY SMEVSY §p5USY [ 6ArSUSY  SMEVSY (M fixed)
(100, —100, 2) —135 —200 0.00015| —0.011 —191
(100, —100, 8) —145 —220  0.00020 | —0.008 —142
(100, 4100, 8) —180 —225 0.00000 | —0.006 —102
( 20, — 20,2) —190 —300 0.00160 | —0.016 =277

where M and p are given in GeV and the mass shifts in MeV. All these contributions (for allowed
low values of the soft SUSY breaking parameters) have the same sign as the top contribution and
thus would strengthen the upper bound for m;.

We may summarize the results as follows:

Virtual effects of supersymmetry may be observable in precision measurements at LEP if the
masses of SUSY particles are close to the present experimental mass bounds. In this case the soft
SUSY-breaking parameters (scale Mgysy) must be rather small. Under reasonable assumptions
for the parameter ranges |Ap®USY| <~ 3 x 1072 and 100 MeV < —6M3Y5Y < 300 MeV.

On the other hand, in the limit where Mgygy gets large all SUSY effects decouple and no heavy
physics is left over.

Finally, I should mention that the now precise knowledge of the gauge couplings allows to test
grand unification scenarios. Recent studies [110] show that SUSY models are the best candidates
compatible with grand unification ideas. While the running couplings within the SM do not merge
in a unification point, supersymmetric theories with a grand desert between the SUSY and the
grand unification scale (~ 10'6 GeV), for M5V5Y in the range My — 1 TeV, are in agreement with
present data.
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Appendix: Renormalization of models with p;... # 1
One of the crucial features of the SM is the validity of the relationship
Gno Mgy 9

= = =1 2 =
Goe  MZcos? 0,  cos 6, g*+g? (309)

p

at the tree level. Many extensions of the minimal SM share this property with the SM. Examples are
models with additional fermion families, additional scalar doublets, vg singlets, massive neutrinos
which might exhibit v-mixing and minimal supersymmetric extensions of the SM. For all these
models
Gne
Geo

is a calculable quantity which is sensitive to weak hypercharge breaking and weak isospin breaking
due to mass splittings of multiplets. In particular, for a fermion doublet

(0) Iy (0)

0)=p=1+Ap (310)

Apf =
MZ T M2
2 2
_ 9 o f 9 Huf
= ————JI3,(0) — =114 (0
2
g A~ A~
= 2 (H§3(0) - Hi(O))
w
V26, Ney [ 2 mim3 m3
= 167‘(‘2 m1+m2+2m%_m% nm—%
V2G N,

is finite and exhibits large non-decoupling heavy particle effects.

Extensions of the SM which do not respect the condition p;... = 1, in a way, are fundamentally
different, since now

/ / , A
HJ\Z;;) N H]\V;ng) - ]\zgv (pl145(0) — 1TL(0)) (312)

is not finite any longer. Such models, for example, are models with triplet Higgs contaminations
[84], models with an extra U(1)ys etc. p or equivalently Gyc = pG),, now, is a new free parame-
ter which requires independent renormalization. This has far reaching consequences because the

quantity HJ@—(ZO) — HAV}’—Q(O) exhibiting the leading heavy particle effects is not observable any more and
zZ w

most of the sensitivity to heavy particle effects is lost as we shall see in the following.

At tree level the following identities hold for the bare parameters:

. _ T

Z) ﬂGNCb - M2, cos? O sin? O,

. _ Ty

“’) \/§Gﬂb M‘%Vb sin? Oy (313>
) _ M, — Gnow
1 Po T MZ,cos204 G

where four parameters are independent. For the independent parameters we may choose a, My,
My and sin® 0, = sin? ©, where o, My, and My have the usual definition and sin? ©, may be
defined from the left-right asymmetry at the Z-resonance.

The implications of a four parameter renormalization are considered now:
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i) NC-processes

may be parametrized conveniently by «, Mz, Gnc(0) and s = sin? ©,. From the bare parameter
relation Eq. (313i) we obtain

T
M?% cos? O, sin* O,

V2Gye =

(1 —+ (5]\[0) (314)

with
b OMZ  0Gno ¢ —s2is]

a Mz  Gnyc 2 82

Sne = (315)

2

By the above definition of the parameters %O‘ and %[% are given by the usual expressions. Fixing
Z

552

¢ from Apg(s = M%) (requiring the Born formula to be exact) we obtain

2 2 2
52 Se M7 se Mz

583 o <% H“{Z(M%> + H’YZ(O) + Afee(M%) _ %H’YZ(O)>

Ce CeH 0
— _S_H;Z(Mg) —-2= 2 )—A/@evverm(Mg) . (316)

Se M2

Defining Gn¢(0) = Gye in low-momentum-transfer v,e-scattering we have

0GNe I1(0)
— L = — R 317
Cne M2 + Rpne (317)
with
Rine = — (Agee(o) + A7(0) + A%OJQ\E/C(O))
24¢L, — 2063 15
= K4 - Zw = 2wt (318)
deyy,
Thus
’ / 2 C%/V B S%/V W 2 vertex+box
dne = H(0) — I (Mz) + TS_HWZ(MZ) + 0N
w w
1
— AO& + TAI + 5}1\[@6tem+bow
Cw
24¢t, — 20c3 15 2 — 52
grertentbor K{ Gy — S T }+ W W A g vertea (319)
4y Ciy

Since G ¢ is an independent parameter here, and hence appears subtracted independently of G,

HAZ(%O) — HAVZ—‘%(;]) is left over.

no term

For the leading heavy particle effects we obtain

2 m2
glov — = qpt
Ne 32, M2
- 1 m2 5
Higgs  _ g~ (In—H _ 2} . 320
One 32, (nMg 3) (320)

ii) CC-processes
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may be parametrized in terms of «, My, G, and sin? ©,. From the bare parameter relation Eq.

(313ii) we get

e’
\/§GM — m (1 + (SCC)

(321)

where o and My, are renormalized as usual and sin? ©, as in the NC case. With G, fixed from

the p decay rate we have

with
Rice = —(A7™(0)+ AY(0) + Al (0))
- K {4L L SR 6}
2siy
Thus

CW vertexr oxr
I (0) — I, (My,) + QH;Z(M%) + Sgtertt

= A A+ Ay sgeTthor

4¢3 3
52%1&693—1-6090 — K{ C;;%—: In C%/V -+ 6} + Affe,verte:v .

The leading heavy particle effects in this case are

4 2
6k = Ko
w
ioas 1 m% 5
ol = K§<HM—12{—§>
w

The relation obtained may be used to predict My from a, M, and sin® ©,

lye’

M2 = —
W \/§G“sin2@e

(1 + 500)

which replaces the SM prediction of My, from o, G, and My .

As a third relation we now consider the bare parameter relation Eq. (313iii).
iii) NC versus CC

For the renormalized quantities this reads

Gye My,
G,  Misin’O,

(1- A7)
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(323)

(324)

(325)

(326)

(327)



where Ap' = dcc — dne. Thus

2
~ S ~lvertex+box
AP = —CTWA1+A2+Ap textb
w

: Acl, +3
Aprertertbor = K {7@;2 el 46—
w

+ STWAKe,verte:c . (328)

24ch, — 20c%, + 15} 2
Ciy

2
deyy

Here the leading heavy particle terms read

, 4 2 m?
AP = K(-+ 75 )In—2
P SRR VS
- 1s? m% 5
AAHzggs — _KZ w 2°H 2 X 329
P 3612/V<HM€V 3 22

Obviously no terms proportional to m? have survived and the leading heavy Higgs terms are

reduced by roughly a factor 10! relative to the minimal SM.
Additional parameter relations:

The relation§hip sin? ©, versus sin? ©,,. remains the same as in the minimal SM. Considering the
on-shell Z f f vertex

(\/§GNC) 2 Mz, (—QQf sin? @, + (1 — ;) Tgf)
the mixing parameter sin® O, is exact for f = e, u, 7. The renormalized on-shell vertex is given by
(\/ﬁGch) 2 Mz, (—QQf sin? O+ (1 —1s) Tgf)
where
Gnef = pziGne sin? O = (14 Akey) sin? ©, (330)
with

AK'Ef = A'%f - A"{e = A/{f,vertex - AKe,vertex

24¢t, —20c%, + 15
Gref(M2)/Gne(0) = pzp = 1+ Az + Apfaertes — K { v — 203, }

4c,
where Ay is defined in Eq. (146) and A%? = 0 and A% = 0 for the heavy top and Higgs limit.

As a result we conclude: LEP experiments alone cannot test heavy particle effects besides the
heavy top effects from the Zbb vertex which yields the result (119).

In the relations between low-energy NC and Z-peak NC processes terms proportional to Inm? and
In m?% may be tested. Since these terms are small and the low-energy NC data have only limited
precision the prospects to get limits on m; and my are rather bad in such a scenario.

How to recover the SM relations:
Using the experimental fact that p = Gne /G, is close to unity we may write

_ Gnce MG,

=14+Ap = ——— (1-A)
G, Tae M? cos? O, ( 2
) M?2 cos? Oy 1 1
p —_= ﬁ —_= 2@ = ~ — = . (331)
7 cos? O, cos?0, 1—-Ap—Ap 1-Ap
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Thus for the prediction of sin? O, from «, G p and My

V2G, pM% cos® O, 5in’ 0, = 7a (1+ dne)
V2G, M} cos? ©,.5in* 0, = | —Wzm (332)

where

1
Ar, = dnc — Ap = Aa — Ap + CTAl + AT@,U@N@J}—{-I)OI
w

which is identical with the SM form, however, with the replacement

~ Hz(0) Ty (0) _ Gne— G,
Ap = M2 M2 — Ap = a. : (333)

Eliminating sin® ©, from \/§GMM5V sin? ©, = ma (1 4 dc¢) using p = cos? O/ cos? O, we obtain
the relation for the prediction of My in terms of o, G, and My:

M2
\/iGHMI%V <1 — ﬁ‘gf (1 - Aﬁ)) = 7TOK<1 + 500)
A
2

2
VG, M2, (1 - M—Vg> ~ 7a (1 beo - CTWA;”)> — o (1+ Ar) (334)
Mz Sw

with Ar given by Eqgs. (84,148) with the replacement (333).

This is a very puzzling situation. The interpretation of measurements looks extremely different
for theories with ps... = 1 from those with py... # 1. In the second case one does not have an
“explanation” why Gn¢ ~ G,. Only models with py... = 1 seem to be natural in reality.

8. SUMMARY AND CONCLUSIONS

In the first year of LEP the four collaborations ALEPH, DELPHI, .3 and OPAL have determined
the main properties of the Z boson with high accuracy under optimum experimental conditions.

Radiative corrections play a crucial role in understanding electroweak precision measurements
in particular the ones which appear at the Z resonance. First of all the radiative corrections
calculated in the SM are needed to pin down limits for the missing SM parameters like the top
and the Higgs mass. Since these particles are too heavy to be produced at present one has to
resort to a precise measurement of higher order effects. In a further step the electroweak radiative
corrections play an important role as sensors for new physics. Before the interesting physics can
be extracted from the experimental data these have to be disentangled from detector cuts and
efficiencies and from the large universal but cut-dependent QED-corrections. Much emphasis has
been put therefore on a precise understanding of QED-effects and on their implementation in Monte
Carlo event generators which provide the bridge between the raw data and the detector independent
“bare” observables of actual physical interest. The calculation of radiative corrections is well
established theoretically for: the Z line-shape (including full O(a?) QED-corrections), the partial
and total Z-widths and the asymmetries, (excluded subleading O(a?) QED-corrections to App)
and the prediction of the W-mass (equivalently Ar and sin? ©y). There is complete agreement
for the analytic expressions at the one-loop level and on the treatment of the leading higher order
terms. The theoretical uncertainties: §(Ar)hedrons = (0.0009, §(Ar)? = 0.0005 (m; < 150 GeV)
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and §(Ar)higher—order — () )01 are small enough and will not obscure the meaning of precision
measurements.

I focussed on discussing implications of the LEP results for precision tests of the Standard Model.
The main results may be summarized as follows:

e The Z mass measurement provides the third very accurately known parameter M, = 91.1744
0.005 £ 0.020 GeV, such that precise predictions are possible using o, G, and My as input
parameters. The total Z width has been determined to 'y = 2.487 4+ 0.009 GeV.

e The neutrino counting yields N, = 2.96 + 0.06. Hence, only the 3 known light neutrinos
exist. This result proves that v; is different from v, and v,,.

e The weak mixing parameter has been determined very precisely. The value sin? © = 0.02315+
0.0027 improves the lower bound for the top mass slightly.

The best direct upper bound on m; is obtained by combining the hadron collider results from the
UA2 and CDF collaborations with the Z mass measurement of LEP.

e The measurement of the mass ratio yields sin? Oy, = 0.2265 £ 0.0062, which together with
My determines the mass My, = 80.14 + 0.32 GeV and implies the bound m; < 202 GeV.
Bounds on m; from global fits including all NC-data have been given in Eqgs. (34) and (302).
The total W-width I'yy = 2.17 £ 0.12 GeV has been obtained as an average from the UAT,
UA2 and CDF results.

It should be kept in mind that the top mass bounds refer to the SM. In models which respect
Piree = 1 these bounds are still pretty save. In extensions of the SM with p;... # 1 the upper
bounds for the top mass are substantially weaker. A global fit [26] in this case yields

e sin” O(My) = 0.2333 £0.0008, piree = 0.992+£0.011, and m, < 294 (310) GeV at 90% (95%)
CL. The corresponding value for sin® Oy is 0.2290 £ 0.0034. The uncertainties include the
my and mpy dependence.

The most important direct new physics bounds are

o my >49.5 GeV (95% C. L.) (LEP)
e m >89 GeV (95% C.L.) (CDF).

e All searches for new particles have been negative. Many lower mass bounds have been
improved. Most of the possible new particles must have masses mye,, > Mz /2.

So far the agreement between experimental data and standard model predictions is almost per-
fect. All data are compatible with “no new physics”. A main obstacle for discoveries is the still
incomplete knowledge of the parameters of the SM (m; and my). To establish deviations we have
to wait for the next step in accuracy. It will be achieved during the next year with about 10° Z’s
per experiment.

From the large number of interesting results testing QCD at the Z mass scale I only mention the
determination of the strong coupling constant [30]
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o a (M%) =0.116+ 0.007 .

This is an important input parameter for calculations of radiative corrections.

For future precision measurements the electroweak radiative corrections will play an important
role as they provide a window to new physics. Laking any experimental hints for “where to go”
we have discussed a selection of possibilities for “new physics”. In principle all kind of effects are
possible. On one hand they are severely constrained by the electroweak data on the other hand
one cannot exclude “new physics” to be right “around the corner”. So, there is good hope for
surprises.

So far the agreement between experimental data and standard model predictions is almost per-
fect. All data are compatible with “no new physics”. A main obstacle for discoveries is the still
incomplete knowledge of the parameters of the SM (m; and my). To establish deviations we have
to wait for the next step in accuracy. It will be achieved during the next year with about 10° Z’s
per experiment.

From the large number of interesting results testing QCD at the Z mass scale I only mention the
determination of the strong coupling constant [30]

o a (MZ)=0.116+ 0.007 .

This is an important input parameter for calculations of radiative corrections.

For future precision measurements the electroweak radiative corrections will play an important
role as they provide a window to new physics. Laking any experimental hints for “where to go”
we have discussed a selection of possibilities for “new physics”. In principle all kind of effects are
possible. On one hand they are severely constrained by the electroweak data on the other hand
one cannot exclude “new physics” to be right “around the corner”. So, there is good hope for
surprises.
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