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ABSTRACT

We review the status of precision tests of the electroweak Standard Model. Radiative corrections
play an important role for the interpretation of precision measurements and provide a window for
the observation of new physics. Implications of recent results from LEP and hadron colliders are
discussed. So far the agreement between experimental data and standard model predictions is al-
most perfect. In order to establish possible deviations from the Standard Model we have to wait for
the next step in accuracy. This will be achieved during this year with about 106 Z’s per experiment.
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1. INTRODUCTION

The large electron positron collider LEP at CERN is the world’s best “microscope” having a
resolution λ = hc/Ec.m. = 1.2 GeV/Ec.m.(GeV) × 10−15 m ≃ 1.3 × 10−15 cm at the Z peak. This
allows us to probe nature at the vector boson mass scale and the hope is to find signals of new
structure beyond the Standard Model of electroweak interactions. Since a temperature of 1◦K is
equivalent to 8.6×10−5 eV, LEP events correspond to mini fireballs at a temperature of 6×1014 ◦K
a state which presumably existed in the early era of the radiation-dominated universe about 10−19

seconds after the big bang. This means that up to this time in the expansion of the universe
photons, gluons etc. were so energetic that they could materialize into fermion-antifermion pairs
which were energetic enough to produce Z and W bosons in annihilation.

The luminosity L, now at ≃ 7.0 × 1030 cm−1 sec−1 is expected to reach about ≃ 1.6 × 1031 cm−1

sec−1 in the future and leads to huge rates of resonant Z boson production making possible very
precise tests of weak neutral current transitions at high energies. The large cross-section at the

Z-peak, σff̄peak ≃ 1.45 (1.95) nb for f = e, µ, τ and 30.08 (40.65) nb for hadrons, (in brackets, the
value without QED corrections) gives easily the production of 1 million Z’s per year at LEP1. The
cross-section is enhanced relative to the pure QED process by a factor (MZ/ΓZ)

2 ≃ 103 or about
150 for leptons and 750 for hadrons.

Precision experiments will be possible mainly during the first phase (LEP1) when LEP is running
with center of mass (c.m.) energies up to about 110 GeV. In a second stage (LEP2) when energies
up to about 200 GeV can be reached the rates will be lower by more than two orders of magnitude.

After one year of operation the four LEP experiments Aleph, Delphi, L3 and Opal have collected
more than 700 000 Z’s [1]. The weak gauge bosons (intermediate vector bosons), the charged W±

and the neutral Z, were discovered at CERN in 1983 by the UA1 and UA2 collaborations [2]. The
CDF collaboration at FNAL collects vector boson data since 1988 [3]. The data samples collected
in hadron colliders experiments are [4]: 112 Z’and 323 W’s (UA1), 162 Z’s and 1676 W’s (UA2)
and 272 Z’s and 1722 W’s (CDF), identified by their leptonic decays.

The basic processes investigated at LEP1/SLC are fermion pair production e+e− → f f̄(f 6= e)
and Bhabha scattering e+e− → e+e−. At LEP2 W-pair production e+e− → W+W− will be the
main process. Radiative corrections play a crucial role in the interpretation of electroweak precision
measurements. We will concentrate on discussing radiative corrections for LEP1/SLC physics near
the Z peak.

The present experimental bounds on physics beyond the Standard Model (SM) almost exclude the
possibility to find new physics at the Born level (new particles or new couplings) at LEP. Thus,
precision tests beyond the Born level will be the central theme at LEP1. The effects we want to
establish are the genuine weak corrections, the self-interactions of gauge fields, Higgs boson and
top quark interactions or similar effects from new physics, expected to be of the order of about 1%.
Their detection requires both experimental and theoretical uncertainties to be smaller than 0.1%.
Typically the expected level of accuracy for various observables at LEP are δMZ ∼ 20 MeV from
the Z line-shape, δ sin2ΘW ∼ 0.0015 from the forward-backward asymmetry AFB, δ sin

2ΘW ∼
0.0004 from left-right asymmetry ALR and δMW ∼ 70 MeV from the W -mass measurement at
LEP2.

The weak effects have to be clearly disentangeld from the large QED corrections (40%) which are
common to any G ⊗ U(1)e.m. theory. This requires both a precise theoretical understanding, in
particular of the QED corrections ( full two-loop QED, multi soft-photon emission) and a precise
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experimental control of the beam properties, detector efficiencies and phase-space cuts (which
requires simulation by Monte Carlo event generators). For neutral current processes up to order
O(α) (one loop corrections), one can separate QED corrections (photonic corrections) and non-
QED corrections (weak corrections) in a gauge invariant and ultraviolet finite way. QED corrections
are the contributions represented by diagrams which involve one extra photon being added to the
Born diagrams of a given process. The extra photon can be either a real bremsstrahlung photon
or a virtual photon loop. The photon vacuum polarization is not included in this QED part of
the electroweak radiative corrections . The non-QED part contains all other diagrams. These
corrections depend on possible deviations from the SM but are independent of the experimental
set up. For quark-loops and hadronic final states in addition QCD corrections must be taken into
account.

For accurate theoretical predictions of vector boson processes, three precisely measured input
parameters are needed. Since only two parameters, namely the fine structure constant α and the
Fermi constant Gµ are known with high precision, one of the most important primary goals is the
precise determination of the Z-mass. A systematic treatment of the radiative corrections leads
to the result that non-QED and non phase-space corrections are negligible near the Z-peak, such
that a model independent determination of the mass and width of the Z is possible. Existing data
reveal interesting bounds on possible new-physics effects.

Besides the Z-mass measurement each additional precision experiment provides a test of elec-
troweak theory beyond the tree level. Of particular interest are

• The detailed investigation of e+e− → f f̄ around the Z resonance which should allow us to
observe small calculable deviations of the partial and total cross-sections σf = σ(e+e− → f f̄)
and σtot =

∑

f σf and the partial and total widths Γf = Γ(Z → f f̄) and ΓZ =
∑

f Γf from
their lowest order predictions

ΓZff̄ =

√
2GµM

3
Z

12π
(v2f + a2f )Ncf ; σff̄peak ≃ 12π

M2
Z

ΓeΓf
Γ2
Z

where vf = T3f − 2Qf sin
2ΘW and af = T3f are, respectively, the vector and axial vector

neutral current (NC) couplings for fermions with flavor f. Ncf is the color factor which is 1
for leptons and 3 for quarks.

• Additional information will be obtained from the on-resonance asymmetries, the forward-

backward asymmetries Aff̄FB and the τ polarization-asymmetry Aτpol. If longitudinally po-
larized beams would be realized, the measurement of the left-right asymmetry ALR and the

polarized forward-backward asymmetries Aff̄FB,pol would substantially improve the results. All
the asymmetries are functions of the specific ratios

Af =
2vfaf
v2f + a2f

of the NC couplings, and thus provide accurate determinations of the weak mixing angle
sin2ΘW . At the tree level the on-resonance asymmetries are given by

Aff̄FB =
3

4
AeAf , ALR = Aτpol = Ae, Aff̄FB,pol =

3

4
Af .

The ”weak” (non-QED) radiative corrections reveal the asymmetries to be very interesting quan-
tities, mainly because the different asymmetries exhibit different sensitivities to various interesting
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effects. The measurement of many independent quantities, which depend in their own way on
unknown physics, is important in order to be able to disentangle the origin of possible deviations
from lowest order predictions.

Notice that higher order predictions depend on the unknown mass of the Higgs boson, the remnant
from spontaneous symmetry breaking, and the mass of the unknown top quark, the missing member
of the 3rd fermion family and other possible unknown physics. While higher order predictions of
physical quantities depend substantially on the unknown top mass the dependence on the unknown
Higgs mass is much weaker. As a first step, data constrain the unknown parameters of the SM.
At the same time bounds on possible extensions of the SM gradually improve.

From the measurements of the Z width ΓZ , LEP has definitely established that only the known
3 light neutrinos exist in nature. An independent neutrino-counting experiment will be the mea-
surement of e+e− → γνν̄ in the region above the Z peak.

2. THE STANDARD MODEL OF ELECTROWEAK INTERACTIONS

The Glashow-Weinberg-Salam model of electroweak interactions [5] together with the QCD sector
of strong interactions [6] defines the standard model (SM) of elementary particle theory. The
known fundamental interactions of elementary particles derive from a local gauge principle with
the gauge group

Gloc = SU(3)c ⊗ SU(2)L ⊗ U(1)Y

which is broken by the Higgs mechanism to SU(3)c ⊗ U(1)em. The SM is determined essentially
by specifying the transformation properties of the massless spin 1/2 matter fields. The SU(3)c
distinguishes color triplets of quarks, conjugate triplets of antiquarks and leaves neutrinos and
leptons as singlets. The SU(2)L distinguishes between doublets of left-handed particles and singlets
of right-handed particles

(

νe
e−

)

L

,

(

u
d

)

L

; e−R, uR, dR

(

νµ
µ−

)

L

,

(

c
s

)

L

; µ−
R, cR, sR

(

ντ
τ−

)

L

,

(

t
b

)

L

; τ−R , tR, bR

The U(1)Y assigns a weak hypercharge Y to the SU(2)L doublets and singlets, such that Q =
T3 + Y/2 is the conserved electric charge of the particles: Qνe = 0, Qu = 2/3 and Q1 − Q2 = 1
for the difference between upper and lower entries of the doublets. Three families of leptons and
quarks exist.

For each factor of Gloc, local gauge invariance requires the presence of a set of massless gauge
fields, which couple minimally to the matter fields. The electroweak gauge fields are denoted by
Wµi(i = 1, 2, 3) and Bµ and the corresponding gauge couplings by g and g′, respectively.
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The physical gauge bosons are the photon Aµ = cosΘWBµ + sinΘWWµ3 and the neutral and
charged weak bosons Zµ = cosΘWWµ3 − sin ΘWBµ and W±

µ = (Wµ1 ∓ iWµ2)/
√
2. These couple

to the fermion currents jemµ =
∑

f Qf ψ̄fγµψf , J
Z
µ = J3µ − 2 sin2 θW jµem and J±

µ = J1µ ∓ iJ2µ. The
charged current (CC) has the form

J+
µ =

∑

ℓ=e,µ,τ

ν̄ℓγµ(1− γ5)ℓ+ (ū, c̄, t̄)γµ(1− γ5)UKM







d
s
b





 (1)

where quarks may change flavor through the unitary Cabibbo-Kobayashi-Maskawa matrix UKM
[7]. The neutral current (NC) on the other hand is strictly flavor conserving (GIM mechanism)
and is given by

JZµ =
∑

f

ψ̄fγµ(vf − afγ5)ψf (2)

where the sum extends over the individual fermion flavors (and color). In our convention the
vector- and axial-vector neutral current coefficients are given by

vf = T3f − 2Qf sin
2ΘW , af = T3f (3)

respectively, where T3f is the weak isospin (±1
2
) of the fermion f . For three (or more) families UKM

exhibits CP-violating phases which are capable of “explaining” the CP-violation observed in K-
decays. The leptonic CC has some very special properties, which derive from the apparent absence
of right-handed neutrinos. If νℓR does not exist the neutrinos must be massless (assuming that
they are Dirac particles like the other fermions) and lepton number Lℓ is conserved individually
for ℓ = e, µ, τ . Among the neutrino puzzles we mention here the following: Do the neutrinos have
a mass and if so why is it so small? Do neutrinos have unusual magnetic moments? Are there
neutrinos which are their own antiparticles (Majorana neutrinos)?

The matter field Lagrangian takes the form

Lmatter =
∑

f

ψ̄f iγ
µ∂µψf +

g

2
√
2
(J+
µW

µ− + h.c.) +
g

2 cos θW
JZµ Z

µ + ejemµ Aµ (4)

where tanΘW = g′/g and e = g sin ΘW is the charge of the positron (unification condition). The
discovery of theW± and Z bosons at the pp̄ collider at CERN directly confirmed these weak gauge
boson couplings. On the other hand for a direct confirmation of the gauge boson self-interactions
of the Yang-Mills Lagrangian

LYM = −1

4
(∂µBν − ∂νBµ)

2 − 1

4
(∂µWνi − ∂νWµi + igεiklWµkWνl)

2 (5)

we have to wait for W -pair production at LEP2. Phenomenologically we know that the SU(2)L⊗
U(1)Y symmetry is broken by the mass terms

Lmass = −
∑

f

mf ψ̄fψf +
1

2
M2

ZZµZ
µ +

1

2
M2

WW
+
µ W

−µ (6)

of the physical particles. We know that adding just these mass terms would spoil the renor-
malizability of the theory. The minimal renormalizable extension is obtained if the masses are
generated by the Higgs mechanism. This requires the introduction of at least one complex scalar
Higgs doublet field Φ which couples in a gauge invariant way to the gauge fields (LHiggs) and to the
fermions (LYukawa). The symmetry is then broken by a non-vanishing vacuum expectation value v
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of the physical Higgs field H . Gauge invariance implies that three of the four fields of Φ (complex
doublet) can be gauged away. As a remnant one physical Higgs scalar must exist. In the physical
(unitary) gauge, where ghost particles are absent, we obtain LHiggs + LYukawa = Lmass + LH with

LH =
1

2
(∂H)2 − 1

2
m2
HH

2 − λvH3 − λ

4
H4 −

∑

f

mf

v
ψ̄fψfH +

M2
Z

v
ZµZ

µH

+
2M2

W

v
W+
µ W

−µH +
M2

Z

2v2
ZµZ

µH2 +
M2

W

v2
W+
µ W

−µH2 . (7)

This term is the missing piece needed to render the SM renormalizable. The Higgs sector is
completely unverified so far and its confirmation is a big challenge for experimental particle physics.

The proof of renormalizability by G. ’t Hooft [8] rejuvenated particle physics about 20 years ago
and preceded the first phenomenological success of the SM which was the discovery of the neutral
currents [9] in 1973.

A basic consequence of the Higgs mechanism is the validity of the following mass-coupling relations.
The vector boson masses are given by

MW =
gv

2
, MZ =

gv

2 cosΘW

. (8)

The fermion masses and the Higgs mass are given by similar relations

mf =
Gf√
2
v , mH =

√
2λ v . (9)

in terms of the Yukawa couplings Gf and of the Higgs coupling λ. In the standard model the
µ-decay constant Gµ is given by

Gµ =
g2

4
√
2M2

W

=
1√
2v2

= 1.166389(22)× 10−5 (GeV)−2 (10)

and thus the Higgs vacuum expectation value

v = (
√
2Gµ)

−1/2 = 246.2186(16) GeV

is a very precisely known quantity, frequently called the Fermi scale, which functions as a con-
version factor between couplings and masses. One important consequence is that the existence of
heavy particles requires strong couplings and for too heavy particles this leads to a breakdown of
perturbation theory. In other words, particles with masses much larger than the Fermi scale are
unnatural in the minimal SM. The non-decoupling of heavy particles is a new feature characteristic
of a spontaneously broken gauge theory. In contrast, in QED and QCD heavy particles decouple
as required by the Appelquist-Carazzone theorem [10].

If we take for granted the SM, we can say that the existence of the Higgs condensate has been
established. Like superconductivity the Higgs could in fact be composite. It is certainly a very
interesting question, whether there is an underlying “BCS-theory” for the Standard Model. In any
case, phenomenologically one expects the SM to work as a low energy effective theory at scales
below 1 TeV.

At the formal level the role played by the Higgs mechanism is the following: It

• breaks SU(2)L ⊗ U(1)Y to U(1)em,
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• generates the masses of the weak gauge bosons W±, Z and the fermions,

• provides a “physical cut-off” to the massive vector boson gauge theory.

The price we have to pay is that

• a neutral physical scalar particle H must exist.

The couplings of the Higgs boson are universally proportional to the fermion mass for fermions
and proportional to the boson mass-squared for bosons. The extremely weak couplings to light
fermions explain why the Higgs is hidden so well from experimental discovery.

Another feature of the minimal Higgs scheme is that all fermion masses and the UKM mixing pa-
rameters are free parameters (13 for the 3 families). This is considered to be a serious shortcoming
of the minimal SM.

Also the mass of the Higgs is a free unknown parameter. At present the limit for mH from LEP
experiments is [11]

mH > 49 GeV (95% CL) . (11)

Possible windows for a light Higgs have been excluded all the way down to mH = 0. At LEP2 the
Higgs search can be extended to about mH ≃MZ [12]. If the Higgs should be heavier, and this is
likely to be the case, a discovery is possible only at future colliders like SSC or LHC.

We should point out that the form of the weak currents is a direct consequence of the minimal Higgs
assumption: Since each family is made up of fields with identical SU(2)L ⊗ U(1)Y transformation
laws invariant Yukawa couplings are possible for combinations of fields from different families.

With the fields having identical SU(2)L⊗U(1)Y quantum numbers one can form horizontal vectors.
For the quarks there are the 4 horizontal vectors quL, qdL, quR, qdR where qu = (u, c, t) and qd =
(d, s, b).

In order to transform the fermion mass matrix to diagonal form we must perform independent
global unitary transformations of the 4 horizontal vectors. Whereas, unitary transformations of
quR, qdR and (qu, qd)L, as a doublet, do not change the matter field Lagrangian, an independent
transformation of qdL leads to “mismatch” q̃dL = UKMqdL of the quark fields in the charged current.
This leads us to the form of the charged current given in Eq. (1) with the unitary 3× 3 matrix

UKM =







Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb





 (12)

which may be parametrized in terms of 3 rotation angles and a phase.

This family mixing occurs if 4 independent unitary transformations are required to diagonalize the
mass matrix, and this is the case if particles of the same charge all have different masses. This
happens to be so for the quarks. If we believe that all neutrinos are massless no mixing in the
leptonic current is possible. Indeed all searches for lepton number violation have yielded no signal
so far.

Due to unitarity, there is no mixing effect in the neutral current, since q̃dLq̃dL ≡ q̄dLqdL . This is
called the GIM-mechanism explaining the absence of flavor changing neutral currents (FCNC). In
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fact, in order to explain the absence of FCNC’s, Glashow, Iliopoulos and Maiani had to propose,
in 1970, the existence of a fourth quark, the charm quark c as a doublet partner of the s quark.
At that time only three quarks where known [13].

The discovery of the J/ψ [14] revealed the completeness of the 2nd family with the charm quark
c. The first 3rd family member showed up in 1975 with the discovery of the τ [15]. With the
observation of the Υ [16] the existence of the b quark could be established. We are still waiting
for the direct observation of bottom’s doublet partner, the top quark. The direct lower limit for
mt from CDF is [4]

mt > 89 GeV . (13)

In models with charged Higges, due to the possible decay t → H+b, only the weaker limit mt >
45 GeV (95% CL) can be obtained [17]. The properties of the weak currents, which essentially
derive from the minimal Higgs assumption, were established in the exciting history of the weak
interactions which started with the Fermi model in 1934. Here, we only mention some more recent
tests of the basic structure of the weak currents: [18]

• V-A structure of the CC:
µ-decay provides the most sensitive, clean and direct tests for right-handed currents. The
best limit for the transition amplitude is

AV+A

AV−A
< 0.029 (90%CL)

• absence of FCNC (at tree level):

Γ(KL → µ+µ−)/Γ(KL → all) = (9.5+2.4
−1.5)× 10−9

Γ(D0 → µ+µ−)/Γ(D0 → all) < 1.1× 10−5

Γ(B0 → e+e−)/Γ(B0 → all) < 3× 10−5

FCNC processes are allowed only through higher order transitions.

• special properties of the lepton current:
Present limits on the neutrino masses are:

mνe < 9.4 eV (from 3H → 3He e
− ν̄e)

mνµ < 250 keV (from π → µ νµ)
mντ < 35 MeV (from τ− → 3π ντ )

Lℓ conservation is established by the branching fractions:

R < 4.9× 10−11 (from µ→ eγ)
R < 1.0× 10−13 (from µ→ 3e)

Neutrino mixing searches (ν-oscillations νℓ ↔ νℓ′) have also been negative so far.

No deviations from the SM has yet been established. Open problems are the measurements of direct
CP-violation (ε′) in the K-meson system and CP-violation in the B-meson system [19]. We still do
not know whether CP-violation is a phenomenon which has its “origin” in the CKM-phase solely,
or if it’s due to a new super-weak interaction outside the SM. Still unsolved is the solar neutrino
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problem [20]. The observed solar νe flux is too low. This could signal flavor mixing (causing
conversion of νe into νµ,τ not visible to present detectors) of the neutrinos which is possible only if
the neutrinos have different masses. Another possibility would be that the νe is unstable.

Fixing the parameters of the SM

Besides the fermion masses, the CKM-mixing parameters and the Higgs mass, the SM has 3
basic parameters g, g′ and v. They are conventionally replaced by parameters which can be
measured directly in a physical process. In view of the mass-coupling relations, typical for a
spontaneously broken gauge theory, masses and couplings are not independent parameters and
many different parametrizations may be advocated. A specific choice of experimental data points
as input parameters defines a renormalization scheme. Like in QED a natural choice would be the
fine structure constant and the physical particle masses (on-shell scheme):

α,MW ,MZ , mf , mH (14)

where the universal fine structure constant α = e2/4π = 1/137.0359895(61) may be determined in
low momentum transfer Coulomb scattering. Since MW will not be known accurately at LEP1 we
must use the precisely determined Fermi constant Gµ obtained from the muon decay rate in place
of MW . Thus, we will use the parameter set

α,Gµ,MZ , mf , mH (15)

for accurate predictions of measurable quantities. In the pre-LEP era when MZ was not known or
known with rather limited accuracy from the pp̄-collider, instead ofMZ the weak mixing parameter
sin2ΘW had to be used. This parameter has been measured first in low momentum transfer
neutrino scattering. Predictions could then be made starting from the low energy parametrization

α,Gµ, sin
2ΘνN , mf , mH (16)

where we have denoted sin2ΘW by sin2ΘνN in order to make precise that the value has been
obtained from νN -scattering. The precise definition of sin2ΘW is process dependent, because the
values measured in different processes differ by higher order corrections. Since sin2ΘW measure-
ments are important in the determination of the SM parameters we now briefly consider neutrino
scattering.

For a low energy definition of the weak mixing angle we may use low momentum transfer neutrino
electron scattering where the cross section ratio

Rνµe = σ(ν̄µe)/σ(νµe) = (ξ2 − ξ + 1)/(ξ2 + ξ + 1) (17)

is independent of the neutral current coupling GNC . The latter is defined by ( Eν the incident
neutrino energy )

GNC =
(

8πσ(νµe)/meEν [(1 + ξ)2 +
1

3
(1− ξ)2]

)1/2

= ρ Gµ (18)

and is equivalent to a determination of the ρ-parameter, which is unity to lowest order in the
Standard Model . The parameter ξ describes the relative strength of the vector coupling of the
leptons

ξ =
ve
ae

= 1− 4 sin2Θνµe (19)
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where sin2Θνµe stands for this particular definition of sin2ΘW . While the purely leptonic νµe-
scattering provides a clean determination of the weak mixing parameter the low event rates lead
to a rather limited accuracy only. The best accuracy which should be achievable at CHARM II is
δ sin2Θνµe ≃ 0.005. The present value is sin2Θνµe = 0.240± 0.012 [21].

: α , Thomson limit q2 → 0

−q2≪M2
W≃ : Gµ

−q2≪M2
Z≃ : sin2Θνµe , ρνµe = GNC/Gµ

e e

γ

µ µ

µ− νµ

e−
ν̄e

W−

νµ νµ

Z

e e

Figure 1: Processes used to define the low energy parameters

More accurate values for sin2ΘW are obtained from semi-leptonic neutral current reactions. In
particular the deep inelastic neutrino nucleus reactions νµN → µ−X and νµN → νµX lead to
rather precise determinations of the neutral to charged current ratios

Rν =
σ(νµN → νµX)

σ(νµN → µ−X)
, Rν̄ =

σ(ν̄µN → ν̄µX)

σ(ν̄µN → µ+X)
, r =

σ(ν̄µN → µ+X)

σ(νµN → µ−X)
(20)

and Rν has been measured to 1% accuracy by CDHS and CHARM [22]. In the Born approximation
of the low energy effective current-current interaction, Eq. (24) below, assuming a valence quark
parton model and approximately isoscalar targets N (Np−Nn

Np+Nn
= 0, N consisting of Np protons and

Nn neutrons) one obtains the simple result

Rν = g2L + g2R r , Rν̄ = g2L + g2R/r (21)

where

g2L = ε2Lu + ε2Ld ≃
1

2
− sin2ΘνN +

5

9
sin4ΘνN , g2R = ε2Ru + ε2Rd ≃

5

9
sin4ΘνN . (22)

In the SM the predictions for the couplings may be written in the form [23]

εLf = ρνN
(

T3f −QfκνN sin2ΘW + λLf
)

εRf = ρνN
(

−QfκνN sin2ΘW + λRf
)

(23)

where ρνN (= 1), κνN (= 1) and λif (= 0) include radiative corrections . The lowest order values
are given in parentheses. One-loop effects will be discussed at the end of Section 4. For a precise
comparison of sin2Θ measurements, a process independent definition of sin2ΘW is needed. A
convenient convention, proposed by Sirlin in this context, is the definition in terms of the physical
vector boson masses (assuming ρtree = 1, see Eq. (28) below). By including process-dependent
radiative corrections sin2ΘW can be computed from sin2ΘνµN measured in a particular process.
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The low energy four-fermion processes are described by the effective Fermi-type Lagrangian

Leff = − 1√
2

(

GµJ
+
µ J

µ− +GNCJ
Z
µ J

µZ
)

+ ejemµ Aµ (24)

which is the low energy effective form (|q2| ≪M2
W ,M

2
Z) of

Lint =
g

2
√
2

(

J+
µW

µ− + h.c.
)

+
g

2 cosΘW

JZµ Z
µ + ejemµ Aµ . (25)

The electroweak unification condition and the relations between the parameters appearing in (24)
and (25) read

i)
√
4πα = e = g sinΘW

ii)
√
2Gµ = g2

4M2
W

= 1
v2√

2GNC = g2

4M2
Z
cos2 ΘW

= ρ0
1
v2

iii) ρ0 = GNC

Gµ
=

M2
W

M2
Z
cos2 ΘW

≡ ρtree

(26)

For the moment we have relaxed from the assumption ρ0 = 1 valid in the minimal SM.

From the parameter relations we now obtain the tree level relation

πα =
e2

4

i)
=

g2 sin2ΘW

4
ii)
=

√
2GµM

2
W sin2ΘW

iii)
=

√
2GµM

2
W

(

1− M2
W

ρ0M2
Z

)

.

If radiative corrections are included, this relation is modified to [24]

√
2GµM

2
W

(

1− M2
W

ρ0M
2
Z

)

= π
α

1−∆r
. (27)

which is the defining equation for ∆r (with ρ0 kept fixed at its tree level value!). In the following
we take ρ0 = 1, as appropriate for Higgse doublets, such that by the last relation of Eq. (26)

sin2ΘW = 1− M2
W

M2
Z

. (28)

The definition of ∆r by Eq. (27) is conceptually very simple, all quantities involved have been
measured and can be found in the particle data tables.

Later, we will often use α and the physical particle masses as a convenient set of independent
parameters. The Fermi constant is then a calculable quantity (µ-decay amplitude). Originally, the
µ life-time τµ has been calculated within the framework of the effective Fermi interaction.

If we include QED corrections (see Fig. 2) we obtain the result

1

τµ
=
G2
µm

5
µ

192π3

(

1− 8m2
e

m2
µ

)

[

1 +
α

2π
(1 +

2α

3π
log

mµ

me
)(
25

4
− π2)

]

. (29)

This formula is used as the defining equation for Gµ in terms of the experimental µ life-time.
Present data [18] yield the value given in Eq. (10).

10



+ + + + +

µ− νµ

e− ν̄e

γ
γ

γ

γ

γ

Figure 2: µ decay with QED corrections in the effective Fermi model

The Z-mass has been determined rather accurately now at LEP [1]

MZ = 91.174± 0.021 GeV (30)

while the W mass is known from the collider experiments UA2 [2] and CDF [3]. Using their
determination of the mass ratio MW/MZ , for which common systematic errors largely drop out,
together with the Z mass from LEP1 we obtain (in brakets the absolute determination from CDF)

MW = 80.19 ± 0.32 (79.91 ± 0.39) GeV . (31)

The value for sin2ΘW obtained from the hadron colliders is

sin2ΘW = 0.2265± 0.0062 (32)

independent of model assumptions. The νN scattering data yield

sin2ΘW = 0.232± 0.006 (33)

assuming the SM with mt = 60 GeV and mH = 100 GeV [22].

In Table 1 and Figure 3 the status of sin2ΘW -measurements is summarized. The results are in
good agreement with each other. By sin2Θe we have denoted sin2Θ measured at the Z-resonance
and by sin2Θνµe the one measured by νµe-scattering. In Fig. 4 we show conversion factors for
various definitions of sin2ΘW . For a discussion we refer the reader to Section 4.

Table 1. sin2ΘW measurements in NC processes [4,22,18,21,1]

Measurement sin2ΘW
MW

MZ
(pp̄) 0.2265 ± 0.0062 (ave.)

UA2 0.2202 ± 0.0084 ± 0.0045
CDF 0.229 ± 0.016 ± 0.002

(

σNC

σCC

)

νµN
0.232 ± 0.006 (ave.)

CDHS 0.2275 ± 0.005 ± 0.005
CHARM 0.236 ± 0.005 ± 0.005
P. V. in Cs 0.215 ± 0.007 ± [0.017]th

e−D (SLAC) 0.217 ± 0.015 ± [0.013]th

Rνµe =
σνµe

σν̄µe
CHARM II 0.240 ± 0.009 ± 0.008

assume mt = 140± 40 → 0.230 ± 0.016
Γℓ, A

ℓ
FB LEP 0.2302 ± 0.0025

assume mt = 140± 40 → 0.220 ± 0.006

11



Figure 3: Comparison of various sin2Θ measurements.

Figure 4: mt-dependence of various sin2Θ conversions.

Assuming ρtree = 1, as required by the minimal SM, recent global fits yield for the weak mixing
angle and the top mass (68%C.L.)

sin2 ΘW = 0.2273± 0.0033, mt = 122+41
−32 GeV Ref. 25

sin2 ΘW = 0.2291± 0.0040, mt = 124+28+20
−34−15 GeV Ref. 26

sin2 Θ̄ = 0.2327± 0.0009, mt = 126± 30± 18 GeV Ref. 1
(34)

when 40 GeV < mH < 1 TeV .

A very important parameter in electroweak theory is the ρ-parameter, defined by the neutral to
charged current ratio at low energy. The νN scattering data yield the most sensitive determination
of the ρ-parameter.

Taking ρ and sin2ΘW as independent parameters, a recent global fit to all NC-data [26] yields (the
values indicated with an asterisk I have obtained by scaling with the theoretical predictions)

12



mt (GeV) 100 140 180 200
sin2ΘW 0.2305 0.2260∗ 0.2207∗ 0.2215 ± 0.0010
sin2ΘW (SM) 0.23027 0.22580 0.22048 0.21741
ρ0 1.003 0.99996∗ 0.996∗ 0.994 ± 0.003
ρ (SM) 1.00776 1.01082 1.01492 1.01737

where the theoretical values (SM) are given for mH = 100 GeV. ρ0 = ρexp

ρSM
corresponds to ρtree if

we ignore possible radiative corrections from non-standard physics. Thus ρ0 is remarkably close
to the minimal standard model value ρtree = 1 .

These experimental results are extremely important constraints for possible deviations from the
SM. For example, the measured value for sin2ΘW is clearly in contradiction to the simplest grand
unified model, namely, minimal SU(5), which predicts sin2ΘW ≃ 0.211 − 0.218. Independently,
this theory has been ruled out by proton decay experiments. The bounds on the ρ-parameter
permit additional scalar doublets or singlets which do not affect the minimal SM value ρtree = 1.
However, possible Higgs triplet contaminations are limited because they imply ρtree 6= 1 and a pure
triplet (∆++,∆+,∆0) would give ρtree = 1/2.

3. LEP PHYSICS, BASIC PROCESSES

3.1 Production and Decay of the Weak Vector Bosons

At lowest order, production and decay of massive vector bosons are described by the Born diagrams

:=
g

2 cos θ
f̄c̄α (γ

µ(vf − afγ5))αβ fcβδc̄c

:=
g

2
√
2
f̄2c̄α (γ

µ(1− γ5))αβ f1cβδc̄c (35)

f̄

f

f̄2

f1

Z

W

if we ignore Cabibbo-Kobayashi-Maskawa mixing for the quark flavors in 1st approximation. We
have indicated the color and spinor indices. Both Z and W± production and decay may be
described by a general vertex ĝf̄2γ

µ(v − aγ5)f1. The production cross section for unpolarized
beams in the zero-width approximation is:

f1(p1) + f̄2(p2) → V (p)

σ(f1 + f̄2 → V ) =
1

Nc1

1

Nc2

1

(2s1 + 1)

1

(2s2 + 1)
π δ

(

(p1 + p2)
2 −M2

V

)

·
∑ |T12|2
M2

V

(36)

where T12 is the transition matrix element and the sum extends over color (ci) and spin (si) of
initial and final state particles. With respect to the initial states, the cross section is determined
by the color and spin averages of |T12|2.

The decay width is determined by the same
∑ |T12|2 (the processes are related by crossing) and

given by

V (p) → f1(p1) + f̄2(p2)

13



Γ(V → f1 + f̄2) =
1

(2sV + 1)

MV

16π

2|~p |
MV

∑ |T12|2
M2

V

(37)

where ~p is the decay momentum of a fermion in the center of mass frame.
The T -matrix element can be easily obtained

T12 = ĝv̄2c̄α(p2, s2)(γ
µ(v − aγ5))αβu1cβ(p1, s1)ε

∗
µ(p, λ)δc̄c .

Taking |T12|2 and summing over color and spin one obtains

∑

|T12|2
M2

V

= ĝ2Ncf

{

(v2 + a2)
(

1− (2− s
M2

V

)
m2

1
+m2

2

2M2
V

− (m2
1
−m2

2
)2

2M4
V

)

+ (v2 − a2)(4− s
M2

V

)m1m2

M2
V

}

.

As a result the formula for the partial widths are given by

ΓV→f1f̄2 =
√
2GµM3

V

12π
2|~p |
MV

Ncf

{

(v2 + a2)
(

1− 1
2

(m2
1
+m2

2
)

M2
V

− 1
2

(m2
1
−m2

2
)2

M4
V

)

+(v2 − a2)3m1m2

M2
V

} (38)

or, for light fermions mi ≪MV , |~p| ≃ MV

2
,

ΓW→f1f̄2 =
√
2GµM3

W

12π
Ncf |V12|2 ; ΓZ→ff̄ =

√
2GµM3

Z

12π
Ncf(v

2
f + a2f ) (39)

where we have indicated the Cabibbo-Kobayashi-Maskawa matrix element V12 for the charged
current. Notice that for sin2ΘW = 0 (i.e. g′ = 0) MZ =MW and

ΓW→f1f̄2 = ΓZ→f1f̄1 + ΓZ→f2f̄2 .

Since mt > 89 GeV , the decays Z → tt̄ andW → tb are energetically forbidden. LEP has excluded
the existence of a fourth family neutrino of mass mν < 40 GeV [1]. Since the heaviest fermion, the
b quark, has mass mb ≃ 4.8 GeV we can safely neglect all mass effects in calculating the widths.

By Γinv = 3ΓZ→νν̄ we denote the invisible width for the decays into νe, νµ and ντ . Γhad is the total
hadronic width for the decays into u, d, s, c and b quarks or the corresponding hadronic states.
The total Z-width (and similarly the W-width) is given with high accuracy by the sum over the
two body decays

Γtot = ΓZ ≃
∑

f

Γf ; Γf = ΓZ→ff̄ = Γν ff (sin
2ΘW )

with ff(sin
2ΘW )

.
= 1 − 4|Qf | sin2ΘW + 8Q2

fsin
4ΘW normalized to the ν channel. Since mH > 49

GeV, the contribution ΓZ→Hff̄ which would be non-negligible for a very light Higgs also can be
ignored.
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Table 2. Lowest order predictions for ΓW and ΓZ for sin2ΘW = 0.23,
MW = 80.19(32) GeV and MZ = 91.174(21) GeV.

W → f1f̄2 Z → f f̄
f1f̄2 Γ0(MeV) Br(%) f f̄ f(sin2ΘW )+ Γ0(MeV) Br(%)
ℓν̄ℓ 225.6 11.1 νℓν̄ℓ 1 165.8 6.8

inv 497.5 20.5
ℓℓ̄ 0.5032 83.4 3.4

ud̄ 676.7 33.3 uū 0.5748 286.0 11.8
dd̄ 0.7404 368.3 15.2

had 1353.4 66.6 had 1676.6 69.2
tot 2030.1 100.0 tot 2424.3 100.0

We now consider Z−production in e+e−collisions. In the light fermion approximation

∑ |T12|2
M2

V

= 3 · 16π ΓZ→ff̄

MZ

and hence, in the narrow width approximation,

σ(e+e− → Z) = 12π
ΓZ→e+e−

MZ

πδ(s−M2
Z)

with s = (p1 + p2)
2 = 4E2

b and Eb the beam energy.

Using the relation (the Breit-Wigner form will be “derived” below)

πδ(s−M2
Z) = lim

ΓZ→0

MZΓZ
(s−M2

Z)
2 + Γ2

ZM
2
Z

we easily obtain the cross section for (finite width) resonance production, described by a Breit-
Wigner line-shape,

σ(e+e− → Z) =
12π

M2
Z

ΓZ→eeΓZM
2
Z

(s−M2
Z)

2 + Γ2
ZM

2
Z

.

Near resonance, the cross section for e+e− → Z → f f̄ is

σ(e+e− → Z → f f̄) = σ(e+e− → Z) · ΓZ→ff

ΓZ

and hence

σf0Z = σ(e+e− → Z → f f̄) = σfpeak
Γ2
ZM

2
Z

(s−M2
Z)

2 + Γ2
ZM

2
Z

. (40)

where σfpeak is the peak cross section (at s =M2
Z)

σfpeak =
12π

M2
Z

Γe
ΓZ

Γf
ΓZ

. (41)
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Table 3. Lowest order peak cross section σfpeak. MZ and Γf as in Tab. 2.
(1GeV−2 = 0.38938× 106 nb)

f ν µ u d inv had tot

σfpeak(nb) 4.16 2.09 7.17 9.23 12.47 42.03 60.77

3.2 The process e+e− → f f̄ , (f f̄γ)(f 6= e)

We now consider in detail the process

e+(p+) + e−(p−) → f̄(q+) + f(q−) + “γ(k)”

in the Born approximation given by the diagrams in Fig. 5. Real γ emission will be considered
below.

In the center of mass frame in terms of the beam energy s = (p++p−)
2 = 4E2

b and t = (p+−q+)2 =
2E2

b (1−cos θ) with θ the angle between p+ and q+. By the arguments given in the previous chapter
we can safely neglect the fermion masses if we assume s ≫ m2

b (the bottom quark is the heaviest
of the final state fermions at LEP energies). tt̄ production is not considered.

+

e+ f̄

e− f

γ Z

Figure 5: Born diagrams for the process e+e− → f f̄

Since we are considering beam energies Eb far above the Υ threshold the fermions are essentially
massless and helicity is a good quantum number. It is therefore convenient to use left- and right-
handed fields fL = 1−γ5

2
f and fR = 1+γ5

2
f which describe polarized fermion states: The couplings

are

:= eQf f̄γ
µf ; := MZ

v
f̄γµ(vf − afγ5)f (42)

f̄

f

f̄

f

γ Z

where f̄γµf = f̄Lγ
µfL+ f̄Rγ

µfR and f̄γµ(vf−afγ5)f = εLf f̄Lγ
µfL+εRf f̄Rγ

µfR with εLf = vf+af
and εRf = vf − af .

We notice that for the vector-like couplings (i.e. vector or axial-vector) no f̄R . . . fL or f̄L . . . fR
terms are present. This is a general feature of any gauge interaction (coupling via spin 1 vector
fields). Since e−L describes a left-handed electron and a right-handed positron etc. there are
no transitions from equal helicity e+e− into equal helicity f̄ f states! Therefore there are only
four possible transition amplitudes Thihf for polarized states: TLL, TLR, TRL, TRR, where hi =
−1 (L), +1 (R) is the electron helicity and hf = −1 (L), +1 (R) the final state helicity of the
fermion f . The helicity of the antiparticle in each case is fixed to the opposite value. This is true
for any gauge theory!

The differential cross section is given by

dσ

d cos θ
=

s

48π
Ncf

∑

|Thihf |2 (43)
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with

|Thehf |2 =
3

8
(1± cos θ)2

∣

∣

∣

∣

∣

εheeεhff

√
2GµM

2
Z

s−M2
Z + iMZΓZ

+QeQf
4πα

s

∣

∣

∣

∣

∣

2

The sign +(-) is for TLL,TRR (TLR, TRL).

In the cross section we distinguish three pieces, the pure QED cross section, the γ−Z interference
term and the pure Z-exchange cross section:

dσ

d cos θ
(e+e− → γ∗, Z∗ → f̄f) =

dσγ

d cos θ
+

dσγZ

d cos θ
+

dσZ

d cos θ
. (44)

Of course, in general, there is no way to measure these terms individually. However, individual
terms may dominate as for example the QED piece at low s or the Z-exchange term near the
Z-resonance.

For unpolarized beams and final states we obtain

dσγ

d cos θ
=

πα2Q2
f
Ncf

2s
(1 + cos2 θ)

dσγZ

d cos θ
= −αQf

√
2GµM2

Z

4s
NcfReχ(s) · {vevf(1 + cos2 θ)

+2aeaf cos θ}
dσZ

d cos θ
=

G2
µM

4
Z

16πs
Ncf |χ(s)|2 ·

{

(v2e + a2e)(v
2
f + a2f )(1 + cos2 θ)

+8aeafvevf cos θ}

(45)

with the resonance factor

χ(s) =
s

s−M2
Z + iMZΓZ

.

Near the Z-resonance, the process e+e− → f f̄ is predominantly a parity violating weak interaction
transition. The axial couplings af lead to asymmetries at the tree level.

i) asymmetry in the angular distribution due to terms linear in cos θ called forward-backward
asymmetry or charge asymmetry AFB, e.g. in e

+e− → µ+µ− the µ+ is produced with different
probability in opposite directions relative to the incoming e+. 1

ii) asymmetry between cross sections for (polarized) L and R states, the so called left-right
asymmetries ALR.

Before we discuss the asymmetries in more detail, we briefly consider the total cross section.

Total cross section

The total cross section, with respect to the final state couplings, may be split into a pure vector
and a pure axial-vector piece

σf0 =
∫ +1

−1
d cos θ

dσ

d cos θ
= σV V0f + σAA0f (46)

1This type of asymmetry (though much smaller) is also present in pure QED (parity conserving) coming from
higher order effects (box diagrams).
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with

σV V0f =
4πα2Q2

f
Ncf

3s
− 2αQf

√
2GµM2

Z
Ncf

3s
Reχ(s)vevf +

G2
µM

4
Z
Ncf

6πs
|χ|2(v2e + a2e)v

2
f

σAA0f =
G2

µM
4
Z
Ncf

6πs
|χ|2(v2e + a2e)a

2
f .

Near the Z-resonance the pure Z-exchange term dominates and we may rewrite the cross section
in the form:

σ0f = σγ0f + σγZ0f + σZ0f = σZ0f ·


1 +
σγZ0f
σZ0f



+ σγ0f = σZ0f

(

1 +Rf
s−M2

Z

s

)

+ σγ0f .

For Rf we find a γ − Z interference correction

Rf =
8παQeQf√
2GµM2

Z

vevf
(v2e + a2e)(v

2
f + a2f)

.

At resonance (s =M2
Z) this correction does not contribute. σγ0f is the QED background term

σγ0f =
4πα2Q2

fNcf

3s

which leads to a correction below 1% at resonance. Finally, using formula (39) for the width we
find Eqs. (40) and (41) in agreement with our simplified derivation of the previous chapter. Closer
inspection shows that the cross section formula

σfeff(s) =
12πΓeΓf

(s−M2
Z
)2+s2

Γ2
Z

M2
Z

{

s
M2

Z

+Rf
s−M2

Z

M2
Z

+ If ΓZ

MZ
+ . . .

}

+ σf0,QED (47)

yields a model independent fit of the Z-line-shape provided Γe,Γf and ΓZ are the physical (partial)
widths, i.e. they include higher order corrections. We have included possible corrections propor-

tional to ΓZ/MZ and the ellipses represent higher order terms in the expansion in
s−M2

Z

M2
Z

and ΓZ

MZ
.

One important point (see below) is that ΓZ(s) defined in terms of the Z self-energy ΠZ(s) by
MZΓZ(s) = ImΠZ(s) is to high accuracy proportional to s:

ΓZ(s) ≃
s

M2
Z

ΓZ .

3.3 Asymmetries

A. Forward-backward asymmetry:

The differential cross section has a cos θ even and a cos θ odd term:

dσ

d cos θ
= σ0f ·

3

8
(1 + cos2θ) + ∆0f cos θ (48)

where σ0f is the total cross section and

∆0f = ∆γZ
0f +∆Z

0f

∆γZ
0f = −αQfNcf

2s

√
2GµM

2
ZReχaeaf

∆Z
0f =

G2
µM

4
Z

2πs
Ncf |χ|2aeafvevf .
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The forward-backward asymmetry is

AFB(s, cos θ) =
dσ(θ)− dσ(π − θ)

dσ(θ) + dσ(π − θ)
=

8

3

∆0f

σ0f

cos θ

1 + cos2θ

or in integrated form

AFB(s) =

(

∫ 1
0 − ∫ 0−1

)

d cos θ dσ
d cos θ

∫ +1
−1 d cos θ

dσ
d cos θ

=
∆0f

σ0f
. (49)

Particular regimes of interest are the following:

i) For small s≪M2
Z we have

R0f =
σ0f
σµµ

≃
{

Q2
fNcf +

√
2Gµ

2πα
Ncf

ve(Qfvf ) s

1− s/M2
Z

}

(50)

where

σµµ = σ0(e
+e− → γ∗ → µ+µ−) =

4πα2

3s

is the QED “point” cross section used to normalize the hadronic cross section

σhad = σ(e+e− → hadrons ) =
∑

quark q

σ0q

R(s)
.
=

σhad
σµµ

=
∑

q

Rq ≃ 3
∑

q

mq≤
√
s

Q2
q (51)

Notice that in this quantity the color factor 3 can be directly measured! For the asymmetry we
get

Aff̄FB(s) ≃
3

8
ae

(

af
Qf

) √
2Gµ

πα

s

1− s/M2
Z

(52)

an expression which vanishes for s→ 0.

ii) For s ≃MZ we find

AFB(M
2
Z) =

∆Z
0f (M

2
Z)

σZ0f (M
2
Z)

=
3

4
· 2veae
v2e + a2e

· 2vfaf
v2f + a2f

. (53)

Asymmetries at the Z−resonance can all be expressed in terms of the coupling ratios

Af
.
=

2vfaf
v2f + a2f

=
ε2Lf − ε2Rf
ε2Lf + ε2Rf

· (54)

From the representation in terms of left- and right-handed couplings introduced earlier we see
that Af measures the normalized difference between left-handed and right-handed transition am-
plitudes. For AFB we have

Aff̄FB(M
2
Z) =

3

4
AeAf . (55)
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It is important to notice that

Ae =
2ξ

1 + ξ2
with ξ =

ve
ae

= 1− 4 sin2ΘW

is a quantity which would vanish for sin2ΘW = 0.25. Since the experimental value for sin2ΘW

is about 0.23 Ae is unfortunately rather small. A small difference of large numbers is difficult to
determine precisely. By universality Ae is the same for ℓ = e, µ and τ and hence

Aµµ̄FB(M
2
Z) =

3

4
A2
e ≃ 3ξ2

Table 4. e+e− → f f̄ forward-backward asymmetry at the
Z-peak for various values of sin2ΘW

sin2ΘW 0.22 0.23 0.24 0.25
ξ 0.12 0.08 0.04 0
Ae 0.237 0.159 0.0799 0
Aµµ̄FB 0.0420 0.0190 0.0048 0
Acc̄FB 0.1253 0.0802 0.0382 0

Abb̄FB 0.1673 0.1117 0.0557 0

B. Final state polarization asymmetry

We only consider the integrated asymmetry

Afpol
.
=
σ(e+e− → fLf̄)− σ(e+e− → fRf̄)

σ(e+e− → fLf̄) + σ(e+e− → fRf̄)
(56)

at the Z-resonance. Using the helicity amplitudes |Thihe|2 we obtain:

Afpol(M
2
Z) =

(ε2Lf − ε2Rf)

(ε2Lf + ε2Rf)
= Af (57)

which is independent of the initial state couplings. This asymmetry cannot be measured for quarks
which hadronize into hadron showers. The only case which can be investigated is the τ -polarization
where it is possible to reconstruct the τ -polarization from the decays τ → πν, τ → ρν and τ → a1ν
with the subsequent decays ρ→ ππ and a1 → πππ. For e+e− → τ+τ− we have

Aτpol(M
2
Z) = Ae =

2ξ

1 + ξ2
(58)

which is linear in the vector coupling ξ. Some numerical values have been given in Table 4.

C. Polarized beams

With polarized beams one can measure a number of additional asymmetries:

a) Initial state transversal polarization asymmetry
(azimuthal asymmetry for natural polarization)

In the magnetic field of a ring collider the e+-spins tend to line up with the magnetic field (−y-
direction) such that a natural transverse polarization is set up. If we assume the electron to move
in the z-direction we may write the e+-polarization vector in the form
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~P± =
(

P±
⊥ cosϕ±, P±

⊥ sinϕ±, P±
L

)

where P±
⊥ measures the transverse and P±

L the longitudinal degree of polarization. ϕ± = −π/2
and P±

L = 0 means natural polarization. If beams are transversely polarized one has an azimuthal
asymmetry and one defines

A⊥ =
4

P+
⊥P

−
⊥

∫

dΩ cos2ϕ dσ
dΩ

(

e+(P+
⊥ ) + e−(P−

⊥ ) → f f̄
)

∫

dΩ dσ
dΩ

(

e+(P+
⊥ ) + e−(P−

⊥ ) → f f̄
) . (59)

We just give, without derivation, the result one obtains for s =M2
Z :

A⊥(M
2
Z) =

v2e − a2e
v2e + a2e

= −1 − ξ2

1 + ξ2
(60)

a quantity which is independent of the final state.

b) Initial state longitudinal polarization asymmetry

In this case, assuming longitudinally polarized beams, one measures the total cross section with
left-handed and right-handed electrons separately and defines

ALR =
σ(e−Le

+ → f f̄)− σ(e−Re
+ → f f̄)

σ(e−Le
+ → f f̄) + σ(e−Re

+ → f f̄)
. (61)

At s =M2
Z one finds

ALR(M
2
Z) =

ε2Le − ε2Re
ε2Le + ε2Re

= Ae ≃ 2ξ (62)

for the integrated asymmetry.

The left-right asymmetry is a very important observable due to the following properties: It is

• a ratio of total cross sections

• independent of the final state 2

• linear in ξ

The first property is very important since the notoriously large QED and QCD corrections are
almost identical for left- and right-handed states and therefore drop out in the ratio almost com-
pletely. The second property implies that one can sum over all flavors gaining enormously in
statistics. The third property tells us that ALR is enhanced by a factor 2/(3ξ) relative to Aµµ̄FB.

In addition the polarized forward-backward asymmetries can be measured:

AfFB,pol =
2

P+
L + P−

L

(
∫ 1
0 − ∫ 0−1)d cos θ

dσ
d cos θ

(P+
L 6= 0)− (

∫ 1
0 − ∫ 0−1)d cos θ

dσ
d cos θ

(P−
L 6= 0)

∫ +1
−1 d cos θ

dσ
d cos θ

(P+
L 6= 0) +

∫+1
−1 d cos θ

dσ
d cos θ

(P−
L 6= 0)

(63)

2This is true only for the integrated asymmetry. The angular distributions AfLR(cos θ) depend on the flavor f .
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which on the Z-resonance yields:

AfFB,pol(M
2
Z) =

3

4
Af (64)

3.4 Conclusions:

The measurement of asymmetries opens up the possibility to determine many independent observ-
ables. This is crucial for precision tests of the SM. Two points make asymmetries at the Z-peak
very interesting. First, at the Z-peak very high rates of events are available which makes high pre-
cision tests possible. Second, at the Z-peak one is dealing almost purely with a weak NC process!
No detailed clean tests of the NC were possible before LEP. The clean νµe-scattering processes
suffer from low rates and the deep inelastic νµN -scattering data from hadronic uncertainties.

Longitudinally polarized beams are highly desired, since only in this case one has good observables
that can test

Af =
2vfaf
v2f + a2f

for individual flavors to a good accuracy. This is an important supplement to the measurement of
the partial widths which yields tests of

v2f + a2f .

For precision tests it will be crucial to carefully analyse the following types of corrections:

i) QED corrections, bremsstrahlung;

ii) electroweak “non-QED” corrections;

iii) QCD corrections for hadronic final states;

iv) mass effects.

These corrections will be discussed in the following. Particularly interesting are the “non-QED”
higher order corrections since they are the key in finding deviations from the SM at its quantum
level.
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4. RADIATIVE CORRECTIONS FOR PRECISION TESTS
4.1 Renormalization

For the calculation of higher order terms we must specify the renormalization procedure. We
choose for the independent parameters the physical particle masses plus a coupling constant. A
natural choice for the coupling is the universal (due to electromagnetic current conservation) fine
structure constant α. This defines a QED-like on-shell renormalization scheme. All other couplings
are then fixed (dependent parameters) by the mass-coupling relations:

sin2ΘW = 1− M2
W

M2
Z

g =

√
4πα

sinΘW
, g′ =

√
4πα

cosΘW
√
2Gµ =

1

v2
=

πα

M2
W sin2ΘW

. (65)

The renormalization then may be performed in two steps:

1. Parameter renormalization

The parameters in the true bare Lagrangian are the bare parameters αb,MWb, ···. We reparametrize

the bare Lagrangian in terms of the physical parameters (experimental input) α,MW , · · · by the
following parameter renormalizations:

M2
V b = M2

V + δM2
V =M2

V (1 +
δM2

V

M2
V

) ;V = W,Z

αb = α + δα = α (1 +
δα

α
) (66)

which have to be performed for the dependent parameters (which serve as convenient abbreviations
only) correspondingly :

sin2ΘWb = sin2ΘW + δ sin2ΘW = sin2ΘW (1 +
δ sin2ΘW

sin2ΘW

)

Gµb = Gµ + δGµ = Gµ (1 +
δGµ

Gµ

) (67)

where, to linear order (suitable for one-loop calculations):

δ sin2 ΘW

sin2ΘW

= cot2ΘW (
δM2

Z

M2
Z

− δM2
W

M2
W

)

δGµ

Gµ
= 2

δv−1

v−1
=
δα

α
− δM2

W

M2
W

− δ sin2ΘW

sin2ΘW

. (68)

It is important to notice that these parameter shifts do not alter the invariance properties of the
Lagrangian. Since the bare parameters and the renormalized parameters (determined by S-matrix
elements) both are gauge invariant the counterterms are gauge invariant.

2. Field renormalization (wave-function renormalization)

In order that the fields describe properly normalized scattering states we must renormalize them
such that the residue of the propagator pole is unity.

For simplicity we ignore the infrared problem caused by soft photon effects. This problem has to be
treated in the same way as in pure QED and we assume the reader to be familiar with it. We shall
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use an infinitesimal photon mass mγ as an infrared regulator at intermediate steps. For observable
quantities the limit mγ → 0 must exist.

We then write for the physical fields:

Vµ b =
√

ZV Vµ ren ; V = A,Z,W±

ψf b =
√

Zfψf ren

Hb =
√

ZHHren (69)

and the Z-factors are fixed by the condition that propagators of the renormalized fields have residue
one at the pole. To leading order Zi = 1 and we may write

Zi = 1 + δZi ;
√

Zi ≃ 1 +
1

2
δZi + · · · . (70)

The renormalization procedure for physical amplitudes may be summarized by the following simple
rules: Performing the parameter shifts and the field renormalizations and expanding to linear order
(appropriate for one-loop calculations), for the fermion-gauge boson vertices, we get the simple
substitutions

eQfγ
µ → eQfγ

µ
(

1 + 1
2
δZγ + δZf +

δe
e

)

MZ

v
γµ
(

T3f(1− γ5)− 2Qf sin
2ΘW

)

→ MZ

v
γµ
(

T3f (1− γ5)− 2Qf sin
2ΘW

(

1 + δ sin2 ΘW

sin2 ΘW

))

(

1 + 1
2
δZZ + δZf +

1
2

δM2
Z

M2
Z

+ 1
2
δGµ

Gµ

)

MW√
2v
γµ(1− γ5) → MW√

2v
γµ(1− γ5)

(

1 + 1
2
δZW + 1

2
δZf1 +

1
2
δZf2 +

1
2

δM2
W

M2
W

+ 1
2
δGµ

Gµ

)

and analogously for the other vertices.

The mass counterterms and the wave-function factors are determined by the transverse parts of
the vector boson self-energies ΠV (V = γ, Z,W ). In terms of the self-energies the propagators are
given by

Dµν
V (k2) =

−igµν
k2 −MV b +ΠV (k2)

+ · · · . (71)

Since the gµν-term determines the physical transverse part we need to consider this term only.

Strictly speaking, this is true for the W -propagator only. For the Z-propagator the situation is complicated by
γ − Z-mixing. Due to mixing one cannot treat the Z and the γ propagators separately. They rather form a 2 ×
2 -matrix propagator. The simplest way to treat this problem is to start from the inverse propagator given by the
irreducible self-energies (sum of one-particle irreducible diagrams). Again we restrict ourselves to a discussion of
the transverse part and we take out a trivial factor −i gµν in order to keep notation as simple as possible. With
this convention we have for the inverse γ − Z-propagator the symmetric matrix [27]

D̂−1 =

(

k2 +Πγγ(k
2) ΠγZ(k

2)
ΠγZ(k

2) k2 −M2
Z +ΠZZ(k

2)

)

.

Taking the inverse we obtain

Dγγ =
1

k2 +Πγγ(k2)−
Π2

γZ
(k2)

k2−M2

Z
+ΠZZ(k2)

=
1

k2 +Πγ(k2)
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DγZ =
−ΠγZ(k

2)

(k2 +Πγγ(k2))(k2 −M2
Z +ΠZZ(k2))−Π2

γZ(k
2)

≃ −ΠγZ(k
2)

k2 (k2 −M2
Z)

DZZ =
1

k2 −M2
Z +ΠZZ(k2)−

Π2

γZ
(k2)

k2+Πγγ(k2)

=
1

k2 −M2
Z +ΠZ(k2)

. (72)

These expressions sum correctly all the reducible diagrams. In the one-loop approximations we get ΠV ≃ ΠV V .

The extra terms are higher order contributions. For precision physics at LEP1 they have to be taken into account.

With the definition that ΠZ includes the quadratic γZ mixing term the Z propagator is renormalized in the same

way as the W propagator.

Because the self-energy functions are quadratically divergent two subtractions (chosen on-shell)
are needed such that the renormalized self-energy function reads

ΠV ren(k
2) = ΠV (k

2)−ΠV (M
2
V )− (k2 −M2

V )
dΠW

dk2
(M2

V )

+higher order terms . (73)

The way the counterterms enter in the self-energies is determined from the transverse part of the
free inverse propagator

−igµν (k2 −M2
V b) → −igµν ZV (k2 −M2

V − δM2
V )

= −igµν (k2 −M2
V − δM2

V + δZV (k2 −M2
V ) + · · ·)

The renormalization conditions then imply that the transverse part of the renormalized self-energy

+ = −igµνΠV ren(k
2)+ longitudinal partV V −δM2

V + δZV (k2 −M2
V )

and its derivative vanish for k2 → M2
V . This yields for the mass counterterm

δM2
V = Re ΠV (M

2
V ) (74)

(vanishes for the photon) and for the wave-function renormalization

δZV = ZV − 1 = −Re
dΠV

dk2
(M2

V ) . (75)

Since V = Z,W are unstable particles ΠV has an imaginary part

Im ΠV (k
2 =M2

V ) ≡ MV ΓV 6= 0 (76)

which determines the width ΓV .

The fermion propagators are renormalized in the same way as the electron propagator in QED.
However unlike in QED the right-handed and left-handed fields are renormalized in a different way
such that

δZf = zvf + zafγ5 . (77)

Finally, we have to determine the counterterm for the electric charge.
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The condition is that

= + + + counterterms

e+

e−

γ Z

evaluated in the Thomson limit (k2 = 0, Eγ → 0) gives the renormalized charge e. Thus

− i e

{

γµ
(

1 +
δe

e
+

1

2
δZγ + zve + Aγee1 − ve

2 sinΘW cosΘW

ΠγZ

M2
Z

+(zae + Aγee2 − ae
2 sinΘW cosΘW

ΠγZ

M2
Z

)γ5

)

− iσµα
kα
2me

Aγee3

}

→ − ieγµ in the Thomson limit (78)

where Aγeei are vertex corrections and ΠγZ is the γ − Z mixing term. From the electromagnetic
Ward-Takahashi identity (∂µj

µ
em = 0) some of the diagrams cancel. While in pure QED

δe

e
= −1

2
δZγ =

1

2
Π′
γ(0) .

In the Standard Model we find

δe

e
=

1

2
Π′
γ(0)−

1− 4s2W
4sW cW

ΠγZ(0)

M2
Z

−Aγee1 (0)− zve =
1

2
Π′
γ(0) + 2Ks2WL (79)

where K = α
4πs2

W

, L = ln
M2

W

µ2
. The last term is the non-abelian contribution from bosonic loops

in the MS scheme 3 and the Feynman-’t Hooft gauge. 4 The fermionic contributions Πf
γZ(0) = 0

vanish at zero momentum transfer. By the e.m. Ward-Takahashi identity we have

Aγee2 + zae −
1

4sW cW

ΠγZ(0)

M2
Z

= 0 .

With δe, the mass counter-terms and the wave-function renormalization factors we have a complete
set of counter-terms which renormalize all other divergent quantities. The Feynman diagrams for
the vector boson self-energies are depicted in Fig. 6. Since the tadpoles drop out in renormalized
quantities we will not consider them. The fermion self-energies are needed for the determination
of the wave-function renormalization factors only. The diagrams for the fermion self-energies and
the electromagnetic vertex are shown in Figs. 7 and 8, respectively.

3Using dimensional regularization, the bare (ultraviolet divergent) quantities exhibit poles in ε = 4−d for d → 4
space-time dimensions. In the MS-scheme the poles are subtracted (together with some constants which accompany
the pole term) such that

2/ε− γ + ln 4π → lnµ2

with µ an arbitrary renormalization scale. γ is the Euler constant. For physical (renormalized) quantities the
µ-dependent terms must cancel.

4In the general ’t Hooft gauge the vector boson propagators have the form

Dµν
V (p, ξ) ≡ −i

(

gµν − (1− ξ)
pµpν

p2 − ξM2
V + iǫ

)

1

p2 −M2
V + iǫ

. (80)

Physical quantities must be ξ-independent (gauge invariance). For ξ = 1 we have the ‘t Hooft-Feynman gauge
where the propagators take a particularly simple form. For ξ → ∞ the propagator becomes purely transverse. This
is the physical (unitary) gauge, where Higgs and Faddeev-Popov ghost particles are absent.
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=
∑

f + +

+ + +

W W
f̄ ′

f W

γ,Z γ,Z,W

H

W

H H

Figure 6a: W self-energy diagrams

=
∑

f + +

+ + +

Z Z
f̄

f W

W W

H

Z

H H

Figure 6b: Z self-energy diagrams

=
∑

f + +
γ Z, γ

f̄

f W

W W

Figure 6c: γ and γZ self-energy diagrams

= + +
f f γ Z W

Figure 7: Fermion self-energy diagrams

= + +

f̄

f

γ
γ, Z W

f̄ ′

f ′

W

W
f ′

Figure 8: Electromagnetic vertex diagrams
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4.2 µ-decay and the Mass-coupling Interdependence

By the relation (27) the parameters MW , MZ , α and Gµ are not independent. Here we calculate
Gµ from α, MW and MZ (on-shell scheme):

Gµ =
πα√
2

1

M2
W sin2ΘW

1

1−∆r

where ∆r 6= 0 due to radiative corrections. Since the QED corrections have been included in
the definition of Gµ already, we have to calculate the non-QED part of the µ decay transition
amplitude

−4
Gµ√
2
J (µ)
µ J (e)µ

for k2 ≃ 0. Here,

J (µ)
µ = ūνµ [γµ (1− γ5)] uµ, J (e)

µ = ūe [γµ (1− γ5)] vνe

denote the muon (µ) and the electron (e) charged current matrix elements where u and v are the
external spinors. The different contributions are shown in Fig. 9.

+ + + +

µ− νµ

e− ν̄e

W−

CC,box

Figure 9a: Radiative corrections to µ-decay

= + +

ℓ− νℓ

W−

Z ℓ νℓ
ℓ νℓ Z W W Z, γ

Figure 9b: CC vertex diagrams

= +

+ +

+ { − }

µ− νµ

e− ν̄e
W Z Z W

W
Z

Z
W

γ γW

CC,box

Figure 9c: CC box diagrams

At the tree level we read off

Gµ√
2
=

e2

8M2
W sin2ΘW

=
πα

M2
W

(

1− M2
W

M2
Z

) .
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Including the one-loop radiative corrections we distinguish among 1) propagator (self-energy) cor-
rections, 2) vertex corrections and 3) box contributions. We will neglect terms proportional to the
light fermion masses, since for mf ≪ MW , they are numerically insignificant. This will lead to
rather simple analytical expressions for the vertex and box contributions in the low energy limit.

Using the bare parameter relations (66-68) we get

Gµ√
2

=
e2b

8 sin2ΘWbM
2
Wb

{

1 +
ΠW (0)

M2
W

+ δCC,vertex + δCC,box

}

=
e2

8 sin2ΘWM
2
W

{

1 + 2
δe

e
− cos2ΘW

sin2ΘW

(

δM2
Z

M2
Z

− δM2
W

M2
W

)

−δM
2
W

M2
W

+
ΠW (0)

M2
W

+ δCC,vertex + δCC,box

}

=
πα

2 sin2ΘWM2
W

{1 + ∆r}

The vertex and box diagrams are depicted in Figs. 9b and 9c.

The important quantity ∆r was first calculated by Sirlin [24]. We read off the formal one-loop
result from the foregoing expression. Collecting the self-energy terms in ∆rse we may write 5

∆r = ∆r(α,MW ,MZ , mH , mf )

= ∆rse +∆rvertex+box . (81)

and denoting s2W = sin2ΘW and c2W = cos2ΘW we have

∆rvertex+box =
α

4πs2W
(6 +

7− 4s2W
2s2W

ln c2W ) (82)

which is the sum of the vertex, box and lepton wave-function contributions plus a γZ mixing term
2 cW
sW

ΠγZ (0)

M2
Z

, rendering the term ultraviolet-finite (in the ’t Hooft-Feynman gauge) .

5Unlike the NC processes (at one-loop order), for the CC processes there is no natural separation into QED and
”weak” part in the Standard Model. The QED corrections to µ decay are not ultraviolet finite and they do not
form a gauge invariant subset . This is in contrast also to the QED corrections for this process if modeled by an
effective Fermi interaction, which can be transformed into a NC form via a Fierz transformation. The only trouble
is caused by the photonic box diagram. After subtraction of the photonic four-fermion vertex correction, which has
been included by convention in the QED correction factor of (29), an ultraviolet divergent and gauge dependent
contribution Rw, as indicated in Fig. 9c, is left over which has to be included in (82).
We then have

∆rvertex+box = 2

(

δe

e

)

vertex

+ δCC,vertex + δCC,box + 2
cW
sW

ΠγZ(0)

M2
Z

where

2

(

δe

e

)

vertex

= −2Aγee1 +
4s2W − 1

2sW cW

ΠγZ(0)

M2
Z

= K · 4s2WL

δCC,vertex =
(

A
Wµνµ
L +AWeνe

L

)

= −K · 2
{(

2 +
s2W
2

)

L+

(

1

2
− 3

s2W

)

c2W ln c2W +

(

s2W
4

− 3

)}

δCC,box = AboxLCC = −K · 1

2s2W

(

−3 + 6c2W + 2c4W
)

ln c2W +Rw

where K = α
4πs2

W

, L = ln
M2

W

µ2 and Rw = K · s
2

W

2 (2L + 1). The amplitudes A. are normalized to the Born terms.

We refer the reader to [28] for a more detailed discussion.
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If we insert the expressions for the counter-terms and rewrite the result by splitting off the self-
energies at k2 = 0 as

Π(k2) ≡ Π(0) + k2 Π′(k2)

the self-energy contributions read:

∆rse = Π′
γ(0)−Π′

γ(M
2
Z) (83)

−cos2ΘW

sin2ΘW

{

ΠZ(0)

M2
Z

− ΠW (0)

M2
W

+ 2
sinΘW

cosΘW

ΠγZ(0)

M2
Z

}

−Π′
W (M2

W ) + Π′
γ(M

2
Z) +

cosΘW

sin ΘW

Π′
γZ(M

2
Z)

−cos2ΘW

sin2ΘW

{

Π′
Z(M

2
Z)−Π′

W (M2
W ) +

sinΘW

cosΘW
Π′
γZ(M

2
Z)
}

This is a representation of ∆rse in terms of the unrenormalized gauge boson self-energy functions.
The form of this result exhibits the large (or potentially large) terms in ∆r which we may write as

∆r = ∆α− cos2ΘW

sin2ΘW

∆ρ+∆rrem (84)

where

∆α = Π′
γ(0)− Π′

γ(M
2
Z)

∆ρ =
ΠZ(0)

M2
Z

− ΠW (0)

M2
W

+ 2
sinΘW

cosΘW

ΠγZ(0)

M2
Z

(85)

are the large (due to fermion loop contributions) terms and ∆rrem is the remainder. Though the
latter term is numerically smaller by one order of magnitude it is an interesting term which includes
contributions from gauge boson self-couplings and Higgs-vector boson interactions. We are now
going to discuss the various terms in (84) in some detail.

(i) ∆α

∆α is the photon vacuum polarization contribution which comes in through

2
δe

e
= Π′

γ(0) + · · ·
= Π′

γ(0)−Π′
γ(M

2
Z) + · · ·+Π′

γ(M
2
Z)

= ∆α + · · ·

and is large due to the large change in scale going from zero momentum (Thomson limit) to the
Z-mass scale µ = MZ . Here, by zero momentum more precisely we mean the light fermion mass
thresholds. The leading light fermion (mf ≪MW ) contribution is given by
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∆α =
∑

f

=
α

3π

∑

f

Q2
fNcf (ln

M2
Z

m2
f

− 5

3
)

= ∆αleptons +∆α
(5)
hadrons +∆αtop . (86)

γ f

f

γ

Since the top quark is heavy we cannot use the light fermion approximation for it. A very heavy
top in fact gives no contribution since

∆αtop ≃ − α

3π

4

15

M2
Z

m2
t

→ 0

when mt ≫ MZ . A serious problem is the low energy contributions of the five light quarks u,d,s,c
and b which cannot be reliably calculated using perturbative QCD. Fortunately one can evaluate
this hadronic term ∆α

(5)
hadrons from hadronic e+e−- annihilation data by using a dispersion relation.

The relevant vacuum polarization amplitude satisfies the convergent dispersion relation

ReΠ′
γ(s)−Π′

γ(0) =
s

π
Re

∫ ∞

s0
ds′

ImΠ′
γ(s

′)

s′(s′ − s− iε)

and using the optical theorem (unitarity) one has

ImΠ′
γ(s) =

s

e2
σtot(e

+e− → γ∗ → hadrons)(s) .

In terms of the cross-section ratio

R(s) =
σtot(e

+e− → γ∗ → hadrons)

σ(e+e− → γ∗ → µ+µ−)
,

where σ(e+e− → γ∗ → µ+µ−) = 4πα2

3s
at tree level, we finally obtain

∆α
(5)
hadrons(M

2
Z) = −αM

2
Z

3π
Re

∫ ∞

4m2
π

ds
R(s)

s(s−M2
Z − iε)

. (87)

Using the experimental data for R(s) up to Ecut = 40 GeV ( for larger energies γZ mixing would
complicate the analysis) and perturbative QCD for the high energy tail we get

∆α
(5)
hadrons(s) = 0.0282± 0.0009 (88)

+0.002980 · {ln(s/s0) + 0.005696 · (s0/s− 1)}

with
√
s0 = 91.176 GeV [29].

In the range 50 GeV ≤ √
s ≤ 200 GeV the above fit is “exact” as compared to the error. Alterna-

tively, this result of the dispersion calculation can be reproduced by using perturbative QCD with
the effective “quark masses”

mu = 62 MeV, md = 83 MeV
ms = 215 MeV, mc = 1.5 GeV
mb = 4.5 GeV
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and a QCD correction factor (1 + αs,eff/π) with αs,eff = 0.133. 6

We should mention that a light fermion not only contributes to ∆α but also to ∆rrem:

∆rfrem ≃ α

4πs2W
(1− c2W

s2W
)
Ncf

6
KQCD ln c2W .

This yields ∆rrem,leptons ≃ 0.0015 and ∆r
(5)
rem,hadrons ≃ 0.0040 .

Perturbative QCD corrections for light quarks (at some high energy scale) are taken care of by the
factor KQCD = 1 + δQCD given by

δQCD =
αs(M

2
Z)

π
+ 1.405

(

αs(M
2
Z)

π

)2

(89)

using [30]

Λ
(5)

MS
= 200+200

−100 MeV, corresponding to αs(M
2
Z) = 0.117± 0.01 . (90)

We first assume the top to be a ”normal” not too heavy fermion and will discuss heavy top effects
in a second step. If there would not exist heavy unknown particles, ∆r would be determined by
the following typical contributions (mt = 60 GeV, mH = 100 GeV):

∆rleptons ≃ 0.0315+0.0015 = 0.0330

∆rhadrons ≃ 0.0282+0.0040 = 0.0322 ± 0.0009

∆rtop ≃ 0.0025 (depends on mt)

∆rbosons ≃ 0.0033 (depends on mH) .

The term ∆rvertex+box ≃0.0064 is included in ∆rbosons. For the light fermions the individual con-
tributions from ∆α and ∆rrem are exhibited as a sum of two terms. The full analytic expression
for a light top would be

∆rtop =
α

3π

4

3

(

ln
M2

Z

m2
t

− 5

3

)

+
α

16πs2W

(

1− c2W
s2W

)

2 ln c2W (91)

for mt ≪MZ .

Numerically the fermionic contributions dominate. The bosonic contributions are smaller by one
order of magnitude but they are nevertheless non-negligible. The self-energy contributions are
large and depend on unknown physics, like the top mass, the Higgs mass, on 4th family fermion
masses etc. Next we consider what happens if the top is very heavy.

(ii) ∆ρ

It was observed first by Veltman [31] that fermion doublets with large mass splittings give large
non-decoupling contributions to ∆ρ (large weak isospin breaking effects). By now we know that
the top quark is unexpectedly heavy , mt > 89 GeV, while mb ≃ 4.8 GeV is rather light.

6Warning: Do not use these values for the quark masses for small spacelike momenta (as needed in Bhabha
scattering). These would give wrong results.
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The diagrams that give rise to leading doublet mass splitting effects are those which exhibit Wtb
(CC) transitions and are quadratically divergent. The Ztt and Zbb (NC) vertices do not mix t and
b and thus do not “feel” the mass splitting. In our case (µ decay) we are concerned only with the
W self-energy diagram

= − α

4π

1

4s2W
Nc

m2
t

M2
W

+ · · ·W t

b

It yields a k2-independent leading term which is (for dimensional reasons) quadratic in mt. We
thus obtain

∆ρ =
ΠZ(0)

M2
Z

− ΠW (0)

M2
W

≃ α

16πs2W
Nc

m2
t

M2
W

+ · · · (92)

and this large contribution gets further enhanced in ∆r

∆r|heavy = −c
2
W

s2M
∆ρ+ · · ·

by an enhancement factor ≃ 3.34 for s2W = 0.23 .

The remainder also contains logarithmic terms which are not negligible numerically. A heavy top
would give the contribution

∆rtop = −
√
2GµM

2
W

16π2

{

3
c2W
s2W

m2
t

M2
W

+ 2

(

c2W
s2W

− 1

3

)

ln
m2
t

M2
W

+
4

3
ln c2W +

c2W
s2W

− 7

9

}

. (93)

Let us mention finally that whereas ∆α will not be changed by unknown physics, ∆ρ is sensitive
to all kinds of SU(2)L multiplets which directly couple to the gauge bosons and exhibit large
mass-splittings.

(iii) Higgs contribution

The Higgs contributions deserve our special attention. In the light fermion approximation only
the vector-boson self-energy diagrams

+ V = Z,WV H H

contribute. At one-loop order there is no quadratic Higgs mass dependence in ∆ρ and in ∆r. The
leading heavy Higgs contributions

∆ρHiggs ≃ −
√
2GµM

2
W

16π2

s2W
c2W

{

3 (ln
m2
H

M2
W

− 5

6
)

}

∆rHiggs ≃
√
2GµM

2
W

16π2

{

11

3
(ln

m2
H

M2
W

− 5

6
)

}

(mH ≫MW ). (94)

are logarithmic.7 This is due to the accidental global SU(2) symmetry of the Higgs sector in the
minimal Standard Model, which implies ρ = 1 at tree level (Veltman screening) [35]. More precisely,
the theorem states that for vanishing fermion masses quadratic terms are absent. Furthermore,
in ∆ρ also the logarithmic term disappears in the limit of vanishing U(1)Y coupling g′. The

7The two-loop contributions to ∆ρ and the mass-shifts ∆MW and ∆MZ have been computed in Refs. [32] and
[33], respectively. The corresponding contribution to ∆r can be obtained easily by using the relation (see Eq. (3.8)
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logarithmic term in the low energy observable ∆ρ is a consequence of the weak isospin breaking
by hypercharge. On the other hand, in ∆r the coefficient of the logarithm does not depend on g′.
Next we have to include the leading higher order effects.

(iv) Summation of leading higher order effects

Our one-loop calculation gave us the O(α) result

√
2Gµ =

πα

sin2ΘWM2
W

(1 + ∆r) .

Typically we get ∆r ≃ 0.07 for MZ=91 GeV, mt=60 GeV and mH=100 GeV. For the next order
term we expect a contribution of the order ∆r2 ≃ 0.005. This would yield a shift in the prediction
of the W mass (in terms of α, Gµ and MZ) of δMW ≃ 190 MeV. Since MW will be measured with
an accuracy of δMW ≃ 70 MeV at LEP2, the O(α) result is insufficient for LEP experiments and
we have to think about how to include the leading higher order terms.

a. Summation of leading logarithms.

The summation of leading logarithms is governed by the renormalization group. Since, in our
case, the leading logs showed up in the QED vacuum polarization only, the leading log summation
may be understood as the solution of the renormalization group equation for the U(1)em coupling
constant (µ = renormalization scale)

µ2 ∂

∂µ2
α(µ2) =

β(α)

2
=
α2(µ2)

3π

∑

mf<µ

NcfQ
2
f

yielding the effective fine structure constant at scale MZ

α(MZ) =
α

1−∆α
(95)

where

∆r ≃ ∆α ≃ α

3π

∑

mf<MZ

NcfQ
2
f ln

M2
Z

m2
f

of Ref. [29])

∆r =
∆M2

W

M2
W

+
c2W
s2W

(

∆M2
Z

M2
Z

− ∆M2
W

M2
W

−∆ρ

)

.

The results are

∆ρ(2)Higgs =

(

α

4πs2W

)2
1

8

s2W
c2W

m2
H

c2WM2
Z

{

−9
√
3Cℓ2(

π

3
)− 21

8
+

9π
√
3

4
+

3π2

4

}

≃ 0.001 ×
( mH

4.74 TeV

)2

∆r(2)Higgs =

(

α

4πs2W

)2
1

8

m2
H

c2WM2
Z

{

9
√
3Cℓ2(

π

3
) +

49

72
+ s2W − 11π

√
3

4
− 25π2

108

}

≃ −0.001 ×
( mH

3.94 TeV

)2

The result for ∆r differs by the s2W term from that given in Ref. [34]. Our result is smaller by roughly a factor
1.5 . Cℓ2 is the Clausen function and 9

√
3Cℓ2(

π
3 )=0.58597681. The numerical values are given for sin2 ΘW = 0.23.

Since ΓH > mH for mH >∼ 1.3 GeV [27] these perturbative results are sensible only for Higgs masses below 1.3
TeV. In this region the contributions are negligibly small.
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in this approximation. Thus Eq. (27) obtained from our one-loop result by the substitution

1 + ∆r → 1

1−∆r

represents the resummation of all powers of (α ln
M2

Z

m2
f

). It is important to notice that the leading

log summation is scheme independent. This can be seen by writing, in leading log approximation,

∆α−1 =
1

α(0)
− 1

α(µ2)
=

1

3π

∑

mf<µ

NcfQ
2
f ln

µ2

m2
f

; µ ≤MW

exhibiting that the r.h.s is independent of the electroweak couplings and hence of the parametriza-
tion used.

Including non-leading log terms we observe that the substitution

1 + ∆r = 1 +∆α +∆rw → 1

1−∆α−∆rw
=

1

1−∆r

is in fact correct only if ∆rw is small, which is the case only if the top is light. As a next step we
have to investigate what happens if ∆ρ is large.

b. Summation of large ∆ρ terms.

A careful analysis of the resummation of large ∆ρ terms [36] shows that Eq. (27) gets modified
into

Gµ =
πα√

2M2
W sin2ΘW







1

1−∆α

1

1 + cos2 ΘW

sin2 ΘW
(∆ρ)irr

+∆rrem







. (96)

Here, (∆ρ)irr represents the leading irreducible contribution to the ρ parameter defined from the
ratio of neutral current to charged current amplitudes at low energy, calculated in Ref. [37], i.e.

GNC(0)

GCC(0)
= ρ = 1 + (∆ρ)irr + (∆ρ)2irr + · · · = 1

1− (∆ρ)irr
. (97)

It is important to note that, in contrast to ∆α, which is not significantly modified by the inclusion
of two loop irreducible contributions,

∆α
(1)
leptons → (1 +

3α

4π
)∆α

(1)
leptons

where ∆α
(1)
leptons is the one-loop lepton contribution to ∆α, ρ as defined in Eq. (97), can differ sizably

from the one loop result. In fact as shown in Ref. [36], by including the two loop irreducible terms
calculated in Ref. [37], one finds

(∆ρ)irr = Ncfxf [1− (2π2 − 19)xf + · · ·] (98)

with

xf =
∆m2

f

8π2

Gµ√
2
.

This means that low energy physics is not sensitive to the bare mass splitting (∆m2
f ), but rather

to the effective quantity

(∆m2
f )eff = ∆m2

f

{

1− (2π2 − 19)
∆m2

fGµ

8π2
√
2

}

.
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The screening effects due to the Yukawa coupling with the scalar sector, may become large for a
large mass splitting. This phenomenon, if confirmed from a closer inspection of the higher order
terms in the perturbative expansion, may have far reaching consequences (possible restoration of
decoupling) for our understanding of the Standard Model.

If we take the result of the full one loop calculation and include correctly the ∆α and ∆ρ effects,
resummed to all orders, we arrive at the final expression

M2
W =

ρM2
Z

2
(1 +

√

√

√

√1− 4A2
0

ρM2
Z

(
1

1−∆α
+∆rrem) ). (99)

Non-leading one-loop self-energy effects can be included by using Eq.(99) together with the replace-
ments [36,38] (combining the 1st and 3rd line and the 2nd and 4th line of Eq. (83), respectively):

∆α → ∆e = Π′
γ(0)− Π′

W (M2
W ) +

cW
sW

Π′
γZ(M

2
Z)

∆ρ → ∆ρ̂ =
ΠZ(M

2
Z)

M2
Z

− ΠW (M2
W )

M2
W

+
sW
cW

ΠγZ(M
2
Z) + ΠγZ(0)

M2
Z

, (100)

where ΠZ includes γZ mixing terms as given in Eq. (71). Notice that ∆e must be calculated in
terms of α and the masses, while ∆ρ̂ must be calculated in terms of Gµ and the masses. We have
checked that the above substitution reproduces correctly all self-energy terms up to O(α2) . Such a
resummation could make sense for the fermion contributions, which form a gauge invariant subset.
However, since terms like the irreducible contribution proportional to α

4π

√
2Gµm

2
t ln(m

2
t/M

2
Z) are

unknown, non-leading terms and the vertex and box corrections ( contributing to Eq.(27) ) should
be added perturbatively, i.e. included in ∆rrem.

(v) Applications

Once ∆r is given the W mass can be predicted by using the values of α, Gµ and MZ from LEP1.
According to Eqs. (27) and (28) we obtain

M2
W =

M2
Z

2
(1 +

√

√

√

√1− 4A2
0

M2
Z

1

1−∆r
) (101)

and, equivalently,

sin2ΘW =
1

2
(1−

√

√

√

√1− 4A2
0

M2
Z

1

1−∆r
). (102)

with

A0 = (
πα√
2Gµ

)1/2 = 37.2802(3) GeV. (103)

Explicit expressions for the various quantities which have been mentioned in this section can be
found in Refs. [24,28]. Numerical results are given in Tab. 5. In Fig. 10 the mt-dependence of ∆r
is shown for various Higgs masses. The W mass measurement is equivalent to a determination of

∆r = 1− πα√
2Gµ

1

M2
Z
M2

W

M2
Z

(1− M2
W

M2
Z

)
. (104)

Using the experimental values (30-32) for MZ and MW , ∆r is determined fairly well and since ∆r
is strongly dependent on the top mass we can use the results to find a direct constraint on the
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top mass. Within one standard deviation we read off from Fig. 10 (the second uncertainty in mt

comes from the change of mH)

∆r = 0.046+0.018
−0.019 ⇔ mt = 136+47+21

−57−5 GeV (105)

assuming mH ≤ 1 TeV. We notice that the direct lower limit mt > 89 GeV is stronger than the
indirect one obtained here.

In future one expects to be able to achieve a precision of δMW = 70 MeV at LEP2. An accuracy
δMW = 100 MeV possibly may be achieved by combining the hadron collider results from CDF
and D0 by the end of 1995 with an integrated luminosity of about 70pb−1 [4]. This corresponds to
an error in ∆r of δ∆r = 0.0056, and using δmt

mt
= −1

2
δ∆r
∆r

this would determine mt to an accuracy
better than δmt = 10 GeV. Of course we are waiting for the direct discovery of the top which
should be within reach in the next few years at the Tevatron.

Figure 10: ∆r as a function of the top mass for various mH

Table 5. Prediction of MW and related parameters (MZ = 91.176 GeV, αs = 0.117).
Masses in GeV. sin2Θe, sin

2Θb and sin2 Θ̄ will be considered below.
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mt mH MW ∆r sin2ΘW sin2Θe sin2Θb sin2 Θ̄

90 100 79.928 0.06032 0.2315 0.2334 0.2335 0.2326

110 100 80.037 0.05430 0.2294 0.2329 0.2333 0.2322

130 50 81.182 0.04607 0.2266 0.2321 0.2328 0.2313
130 100 80.151 0.04786 0.2272 0.2324 0.2330 0.2316
130 1000 80.002 0.05623 0.2301 0.2334 0.2341 0.2327

150 100 80.275 0.04068 0.2248 0.2318 0.2328 0.2310
200 100 80.642 0.01840 0.2177 0.2299 0.2321 0.2292
230 100 80.905 0.00133 0.2126 0.2286 0.2315 0.2278

4.3 Effective Couplings at the Z Resonance

In this section, for simplicity, we concentrate on LEP1 observables directly related to the NC pro-
cess e+e− → f f̄ near the Z peak. Radiative corrections for this process have been calculated by
many groups [39,40]. The diagrams for the one-loop corrections are depicted in Figure 11.

+ + + +

e+ f̄

e− f

γZ

NC,box

Figure 11a: Radiative corrections to e+e− → f f̄

= + +

f̄

f

γZ
Z W

W

W

f ′

Figure 11b: NC vertex diagrams

= +

+ +

e+ f̄

e− f

Z

Z

Z

Z

W

W

W

W

NC,box

Figure 11c: NC box diagrams

Because of the factorization of the non-QED corrections at the resonance, the weak corrections

= + + + counter terms

f̄

f

Z γ
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can be cast into an overall renormalization of the Zff̄ vertex

(
√
2Gµ)

1/2MZγ
µ(−2Qf sin2ΘW + (1− γ5)T3f )

by ρ
1/2
f and a renormalization of sin2ΘW in the NC vector-coupling [41]:

Gµ → ρfGµ (106)

sin2ΘW → κf sin
2ΘW ,

where ρf = 1 +∆ρse +∆ρf,vertex and κf = 1 +∆κse +∆κf,vertex.
8 In terms of the corrections δvf

and δaf of the vector and axial vector couplings we have

∆ρf = 2
δaf
af

, ∆κf =
afδvf − vfδaf
af(vf − af )

=
afδvf − vfδaf

−2Qfaf sin
2ΘW

.

The potentially large self-energy (se) contributions are universal. The analogues of Eq. (84) for
∆ρ and ∆κ read

∆ρse = ∆ρ̄ = ∆ρ+∆ρse,rem (108)

∆κse = ∆κ̄ =
c2W
s2W

∆ρ+∆κse,rem =
c2W
s2W

∆ρ̂

with ∆ρ and ∆ρ̂ defined in Eqs. (85) and (100), respectively. The self-energy terms are given by

∆ρse,rem = ∆Z =
ΠZ(M

2
Z)

M2
Z

− ΠZ(0)

M2
Z

−
(

dΠZ

dq2

)

(M2
Z) . (109)

The vertex contributions are (if f 6= b) relatively small (but not negligible) and flavor dependent.
We may define effective sin2Θ’s by

sin2Θf = κf sin
2ΘW = κ̃f s̃

2 (110)

8The explicit expressions for the light fermion vertex corrections are [42]

∆ρf,vertex =

√
2GµM

2
Z

16π2

{

2(3v2f + a2f )Λ2(s,MZ)

−4c2W (1− 2(1− |Qf |)s2W )Λ2(s,MW ) + 24c4WΛ3(s,MW )
}

−∆rvertex+box

∆κf,vertex =

√
2GµM

2
Z

16π2

{

−(1− 4|Qf |s2W )(1− 2|Qf |s2W )Λ2(s,MZ)

+2c2W (1− 2(1− |Qf |)s2W )Λ2(s,MW )− 12c4WΛ3(s,MW )
}

(107)

where ∆rvertex+box is given by Eq. (82) and comes in through the α → Gµ replacement used here. The functions
Λi(s,M) are given (y = M2/s with M = MZ or MW , s > 0)

Λ2(s,M) = −7

2
− 2y − (2y + 3) ln(y)

+2(1 + y)2
[

ln(y) ln(
1 + y

y
)− Sp(−1

y
)

]

− iπ

[

3 + 2y − 2(y + 1)2 ln

(

1 + y

y

)]

Λ3(s,M) =
5

6
− 2y

3
+

2

3
(2y + 1)

√

4y − 1 arctan
1√

4y − 1

−8

3
y(y + 2)

(

arctan
1√

4y − 1

)2

.

where the formula for Λ3 is valid for s < 4M2 only. The Spence function is defined by Sp(x) = −
∫ 1

0
dt
t ln(1 − xt).

For f=b the expressions are more complicated and may be found in Ref. [43].
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where

s̃2 = sin2 Θ̃ =
1

2
(1−

√

1− 4A2
0/M

2
Z ) = 0.2122(1) (111)

is the lowest order sin2Θ in terms of α, Gµ and MZ . We have

κ̃f = κf +
c̃2

c̃2 − s̃2
∆r =

c̃2

c̃2 − s̃2
∆rf (112)

and, generalizing Eq. (104),

√
2GµM

2
Z cos2Θf sin

2Θf =
πα

(1−∆rf )
; ∆rf = ∆r +

c̃2 − s̃2

c̃2
∆κf . (113)

Using Eqs. (84) and (107) we obtain

∆rf = ∆α−∆ρ+∆rf,rem . (114)

and we may calculate

sin2 Θf = κf sin
2ΘW =

1

2
(1−

√

√

√

√1− 4A2
0

M2
Z

1

1−∆rf
) (115)

which compares to Eq. (102).

Comparing Eq. (114) with Eq. (84), we notice that the LEP1 versions ∆rf and sin2Θf of ∆r and
sin2ΘW (obtained from the W-mass measurement) are by a factor c2W/s

2
W ≃ 3.3 less sensitive to

heavy particle effects (see Fig. 14 below). But in both cases it is the same quantity , namely ∆ρ,
which is measured.

Figures 14 and 15 exhibit the different behavior as a function of mt.

Also, one finds that the sensitive to a heavy Higgs is lower by a factor (1 + 9s2W )/(11c2W ) ≃ 2.8.
This does not mean that LEP1 experiments are less suitable to get important information on
heavy physics, however. Thanks to the higher statistics of LEP1 experiments, LEP1 observables
are measured with higher precision. Furthermore, the relative sensitivity to the Higgs is higher at
LEP1, a welcome fact, since the Higgs remains “the big unknown” in the Standard Model.

From the measured effective sin2 Θi’s we may evaluate

∆rexpi = 1− πα√
2GµM

2
Z

1

sin2Θexp
i cos2Θexp

i

. (116)
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Figure 14: Flavor dependence of effective sin2Θ’s.

Figure 15: Flavor dependence of effective ρ’s.

The values for sin2Θexp
f can be obtained, using the tree level formulae, from the on-resonance

asymmetries which have been corrected for QED effects, experimental cuts and detector efficiencies.
For example, from the experimental left-right asymmetry we get

sin2Θexp
e = sin2ΘLR =

ALR − 1 +
√

1− A2
LR

4ALR
, (117)

which confronts with the theoretical prediction Eq. (115). The last equation may also be used to
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determine sin2Θexp
e from the forward-backward asymmetry Aµ

+µ−

FB if we identify

ALR =

√

4

3
Aµ

+µ−

FB .

The weak mixing parameter most precisely measured at LEP is

sin2Θe(M
2
Z) = 0.2302± 0.0025 ⇔ mt = 196+54+24

−76−16 GeV . (118)

We see that the mt-bound is weaker than the one obtained from the hadron collider results. The
smaller error cannot yet compensate for the weaker mt-dependence of sin2Θe in comparison to
sin2ΘW . While this measurement does not improve the upper limit, it does improve the lower
limit to mt > 104 GeV. LEP has dramatically improved the precision of the leptonic Z couplings

Particle Data 90 [17] LEP 90 [1]
geV = -0.045 ± 0.022 -0.037 ± 0.005
geA = -0.513 ± 0.025 -0.501 ± 0.003

Since geA = −√
ρe/2 and geV /g

e
A = 1− 4 (1 + ∆κ̃e) s̃

2 = 1− 4 sin2Θe we obtain

∆ρe = 0.002± 0.006 , ∆κ̃e = 0.126± 0.048 , sin2Θe = 0.2315± 0.0027 .

Due to virtual b-t transitions in the Zbb̄ vertex

+
b̄

b

Z
W

t̄

t

W

W

t

one finds large vertex corrections from a heavy top quark, given by [41]

∆κb,vertex =

√
2GµM

2
W

16π2

{

2
m2
t

M2
W

+
1

3
(16 +

1

c2W
) ln

m2
t

M2
W

+ · · ·
}

(119)

∆ρb,vertex = −2∆κb,vertex.

These corrections lead to a much weaker top mass dependence of quantities (partial width, asym-
metries) associated with bb̄ final states.

Thus, in comparison with other channels the production of bb̄ is particularly interesting since

sin2Θb − sin2Θe = s̃2(∆κb,vertex −∆κe,vertex)

gbA/g
e
A = 1 + (∆ρb,vertex −∆ρe,vertex)

measure the large top contribution of the Zbb-vertex. They are completely independent of Higgs
and other heavy particle effects and hence they are ideal heavy-top-mass-meters. As an example, for
mt = 200 GeV we obtain sin2Θb−sin2Θe= 0.0020 and gbA/g

e
A= 0.9821. For sin2Θb an experimental

accuracy of 0.0009 is supposed to be achievable.

We may define a flavor independent effective sin2Θ by

sin2 Θ̄ = (1 + ∆κse) sin
2ΘW (120)
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and include the small vertex corrections in a second step

sin2Θf = (1 + ∆κf,vertex) sin
2 Θ̄ (121)

up to negligible higher order terms. The flavor independent auxiliary quantity sin2 Θ̄ is used in
Ref. [40] and is very similar to s2∗ introduced in Ref. [44]. The “barred”(or “starred”)-quantities
are obtained by ignoring (small) corrections different from the vector boson self-energies.

The leading heavy top and heavy Higgs dependence is given by

∆r̄top =

√
2GµM

2
W

16π2

{

−3
m2
t

M2
W

+
2

3c2W
ln

m2
t

M2
W

+ · · ·
}

(122)

∆rtopb =

√
2GµM

2
W

16π2

{

−1 + s2W
c2W

m2
t

M2
W

+
16c2W (c2W − s2W )− 1

3c4W
ln

m2
t

M2
W

+ · · ·
}

and

∆r̄Higgs ≃
√
2GµM

2
W

16π2

{

1 + 9s2W
3c2W

(ln
m2
H

M2
W

− 5

6
)

}

(123)

respectively. Except from extra top contributions in the case of f = b, all heavy particle effects
are universal, i.e. ∆rtopf 6=b = ∆r̄top and ∆rHiggsf = ∆r̄Higgs.

What is the proper resummation of the large higher terms in case ∆ρ is large? Using Eqs. (107),
(97) and (99) we have

sin2Θf =

(

1 +
cos2ΘW

sin2ΘW

∆ρ+ · · ·
)

sin2ΘW

= 1− M2
W

ρM2
Z

+ · · ·

=
1

2
(1−

√

√

√

√1− 4A2
0

ρM2
Z

(
1

1−∆α
+ · · ·) ) + · · ·

where the ellipses stand for the small remainder terms. As a result we obtain

1

1−∆rf
=

1

1−∆α
(1− (∆ρ)irr) + ∆rf,rem (124)

for the proper resummation of the large terms in Eqs. (113) and (115). This leads to the important
relation

√
2Gµρ̄M

2
Z cos2Θf sin

2 Θf = πᾱ(1 + ∆rf,vertex) (125)

where

ρ̄ =
1

1−∆ρ̄
≃ 1

1−∆ρ

ᾱ =
α

1−∆e
≃ α

1−∆α
(126)

with ∆ρ̄ and ∆e given in Eqs. (108) and (100), respectively. Ignoring vertex corrections we obtain
the universal relation

√
2Gµρ̄M

2
Z cos2 Θ̄ sin2 Θ̄ = πᾱ . (127)
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For completeness we mention that sin2Θe measured at the Z peak is the high energy analogue of
sin2Θνµe measured in low momentum transfer νµe− scattering. In fact, the two versions of sin2Θ
are related in a way which is practically independent of unknown effects ( they differ by γZmixing
and νµ charge radius contributions only, which, by accident, largely cancel each other numerically
). Formally we have

sin2Θe = (1 + ∆se +∆νµe,vertex+box +∆κe,vertex) sin
2Θνµe (128)

where

∆se =
cosΘW

sin ΘW

{

Π′
γZ(M

2
Z)−

dΠγZ

dq2
(0)

}

(129)

= ∆α−∆α2

∆νµe,vertex+box =
α

4πs2W

{

2

3

(

ln
M2

W

m2
µ

+ 1

)

+
24c4W − 14c2W + 9

4c2W

}

and ∆κe,vertex is the same as in Eq. (107). The shift ∆α2 in the SU(2)L coupling α2 = g2

4π
is

analogous to ∆α in Eq. (85)

∆α2 = Π′
3γ(0)− Π′

3γ(M
2
Z) (130)

=
α2

12π
Σl|Ql|(ln

M2
Z

m2
l

− 5

3
) + ∆α

(5)
2,hadrons (131)

where the sum extends over the light leptons and [29]

∆α
(5)
2,hadrons(s) = 0.0587± 0.0018 (132)

+0.006184 · {ln(s/s0) + 0.005513 · (s0/s− 1)}

is the hadronic contribution of the 5 known light quarks u,d,s,c,b (
√
s0 = 91.176 GeV).

The proper summation of the higher order effects in this case reads

sin2Θe =
{

1−∆α2

1−∆α
+∆νµe,vertex+box +∆κe,vertex

}

sin2Θνµe (133)

The ratio sin2Θνµe/ sin
2Θe is shown in Fig. 4 as a function of mt. The value of this ratio is close

to 1.002. This relation provides a sort of “model independent” constraint for the Standard Model
. The CHARM II value for 0.240± 0.012 [21] is in agreement with the SM. The precise definition
of the low energy ρ-parameter is (to linear order)

ρνµe =
GNC(0)

GCC(0)
= 1 + ∆ρ+∆ρvertex+box (134)

with ∆ρ given in Eq. (85) and

∆ρvertex+box =

√
2GµM

2
Z

16π2

{

24c4W − 44c2W + 15− 2
c2W
s2W

(4c2W + 3) ln c2W

}

.

Similar to the asymmetries, the corrected partial widths ΓZff̄ =
√
2GµM3

Z

3π
(v2f + a2f )NcfKQCD (1 +

δQED) and the peak cross-sections σff̄peak ≃ 12π
M2

Z

ΓeΓf

Γ2
Z

are given by the Born formulae using the

effective parameters Eq. (106). The uncertainty in αs implies an uncertainty of 12 MeV in ΓZ,tot.
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The QED-correction including real photon emission is given by δQED = 3α
4π
Q2
f . In Tab. 6 some

values are given for the widths and peak cross-sections. The full QCD corrections will be discussed
in subsection 4.5 below.

Table 6. Z widths and peak cross-sections for MZ = 91.176 GeV and αs = 0.117.
Masses are given in GeV, widths in MeV and cross sections in nb.

mt mH ΓZ Γh Γℓ Γinv Γc Γb Rhad σpeakµ σpeakhad

90 100 2482 1733 83.4 499 296 378 20.787 1.9927 41.423

110 100 2485 1735 83.5 499 296 378 20.782 1.9937 41.432

130 50 2490 1739 83.7 500 297 378 20.780 1.9944 41.443
130 100 2489 1738 83.7 500 297 377 20.775 1.9949 41.444
130 1000 2481 1732 83.5 499 296 376 20.755 1.9971 41.449

150 100 2494 1741 83.9 501 298 377 20.767 1.9963 41.456
200 100 2508 1751 84.4 504 301 375 20.745 2.0002 41.494
230 100 2519 1759 84.9 506 303 375 20.731 2.0028 41.521

4.4 Results from LEP at the Z Resonance

The results from LEP based on 600,000 Z decays (presented at the Aspen Conference January
1991) are collected in Tab. 5.

The central values are given for mt = 136 GeV and mH = 100 GeV. The uncertainties for the
SM predictions include variations of the parameters within the one standard deviation bounds
89 GeV < mt < 204 GeV, from UA2 and CDF data, and 50 GeV < mH < 1 TeV. More
precisely, the allowed range for mt depends on mH . Since, in the range of interest, all quantities
are monotonic functions of mH and mt we may inspect the extremal cases simply: For mH = 50
GeV the 1σ range for mt is (74,180) GeV or (89,180) GeV if we take into account the direct bound
(26). For mH = 1 TeV we get (104,204) GeV. The bounds given in Tab. 5 are then the maximum
or minimum values from the two extremal cases. Taking an upper bound 1 TeV for the Higgs mass
is of course a theoretical prejudice.

The mass and the total width of the Z are determined from the line-shape. The separate analyse
of the visible channels e+e− → hadrons and e+e− → ℓ+ℓ− lead to Γhad and Γℓ (ℓ = e, µ, τ),
respectively. Using these and the total Z-width

ΓZ = Γhad + 3 Γℓ + Γinvisible; Γinvisible = Nν(Γν)SM

in terms of the hadronic, leptonic and neutrinic contributions, Γinvisible can be determined. Nν is
then extracted as the effective number of SM neutrinos. The most important result established by
the LEP experiments so far is that Nν = 2.95± 0.05 and hence no additional light (mν ∼<45GeV )
neutrino (sneutrino, Majoron etc.) exists [1]. This rules out the existence of further family replicas
of the known type with (within experimental limits) massless neutrinos.

Table 7. LEP results on the Z peak

45



ALEPH DELPHI L3 OPAL LEP SM sin2 Θ̄

Z decays 195,000 130,000 125,000 184,000 634,000

MZ 91.182 91.175 91.180 91.160 91.174 0.2315
(GeV) ±0.009 ±0.010 ±0.010 ±0.009 ±0.005 +.0018

−.0019
±0.020 ±0.020 ±0.020 ±0.020 ±0.020

ΓZ 2488 2454 2500 2497 2487 2490 0.2322
(MeV) ±17 ±21 ±17 ±17 ±9 ±22 +.0017

−.0024
σpeakhad 41.76 41.98 40.92 41.23 41.46 41.45 0.2313
(nb) ±0.39 ±0.63 ±0.47 ±0.47 ±0.29 ±0.12
Γhad 1756 1718 1739 1747 1744 1739 0.2314

(MeV) ±15 ±22 ±19 ±19 ±10 ±18 ±.0022
Γℓ 83.3 83.4 83.3 83.4 83.3 83.7 0.2326

(MeV) ±0.7 ±1.0 ±0.8 ±0.7 ±0.4 ±0.5 ±.0021
Rhad 21.07 21.61 20.88 20.94 20.94 20.77

±0.19 ±0.33 ±0.28 ±0.24 ±0.12 ±0.12
Γinv 481 486 511 499 493 500

(MeV) ±14 ±21 ±18 ±17 ±9 ±3
Nν 2.90 2.93 3.08 2.99 2.96 3

±.08 ±.13 ±.10 ±.10 ±.06

Aµ
+µ−

FB 0.024 0.008 0.024 0.007 0.016 0.0151 0.2313
±.008 ±.013 ±.015 ±.008 ±.005 ±.004 ±.0027

(ve/ae)
2 0.0082 0.0028 0.0080 0.0023 0.0054 0.0051 0.2315

±.0026 ±.0044 ±.0048 ±.0028 ±.0016 ±.0013 ±.0027
AbFB 0.141 0.130 0.135 0.0962 0.2241

±.044 ±.043 ±.031 +.012
−.006 ±.0077

Of particular interest is the observable Rhad = Γhad/Γℓ which is almost independent of mt, due to
an accidental cancellation of the mt-dependence between the Zbb-vertex and the self-energies. A
deviation from the SM would be a direct signal for non-standard physics. The experimental value
20.92± 0.13 is slightly higher than the SM prediction 20.77± 0.12. Also the hadronic peak cross-
section σpeakhad is weakly dependent on mt only. The experimental value is in perfect agreement with
the prediction. Before more stringent tests are possible one has to pin down further the allowed
mass ranges for the top and the Higgs. We do not expect that the errors on MZ and αs can be
substantially improved further.
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Figure 16: Results for Γhad, Γℓ and Rhad.
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Some major results obtained in the first year of LEP (∼ 600 000 Z’s) are shown together with
theoretical predictions in Figures 16 and 17. All Figures show the data together with the theoretical
prediction as a function of the top mass for mH= 50, 100 and 1000 GeV. An uncertainty δαs =
±0.01 in the strong interaction coupling constant is shown as an inner error band whereas the outer
error band shows the uncertainty in the prediction due to the experimental error δMZ = ±0.021
in the Z-mass. The agreement between the experimental numbers and the theoretical predictions
is impressive.

4.5 QCD Corrections

We distinguish two different kinds of QCD corrections:

i) gluonic corrections of quark loops contributing to parameter shifts.

ii) gluonic corrections to quark final states

We first discuss the QCD corrections to quark loops. Typically, we have to distinguish between
two cases, the light quark contributions to ∆α and the heavy quark contributions to ∆ρ. In both
cases there are uncertainties because strong interaction effects are not well under control by theory.
The problems are due to:

(i) the ill-defined QCD parameters. The scale of αs and the definition and scale of quark masses
to be used in the calculation of a particular quantity are quite ambiguous in many cases.
(ii) the bad convergence and/or breakdown of perturbative QCD. In particular at low q2 and in the
resonance regions non-perturbative effects that are theoretically poorly known are non-negligible.

The theoretical problems with the hadronic contributions of the 5 known light quarks to ∆α can
be circumvented by evaluating the dispersion integral (87) using the experimental e+e−-data as
input (which include all orders in perturbation theory). The hadronic contribution of the 5 known
light quarks u,d,s,c,b obtained in this way have been given in Eqs. (88) and (132). The errors
δ(∆α)had = ±0.0009 and δ(∆α2)had = ±0.0018 are dominated by the large experimental errors
in the continuum contributions to σtot(e

+e− → γ∗ → hadrons) below the Υ threshold, and can
be improved only by more precise measurements of hadron production in e+e−-annihilation in the
corresponding low energy region. This uncertainty leads to an error of δMW = 17 MeV in the
W -mass prediction and δ sin2Θ = 0.0003 in the prediction of the weak mixing parameters.

For the high energy tail we have to apply perturbation theory. For the light quarks the perturbative
QCD corrections amount to the correction factor KQCD = 1 + δQCD given in Eqs. (89) and (90).
At the Z mass scale δQCD ≃ 0.039 for the u,d,s and c quarks, whereas for the b quark δQCD ≃ 0.044
as we shall see below.

The contribution to ∆ρ from quark doublets with large mass splittings exhibits large QCD cor-
rections in the weak current quark loops. The relevant exact analytic expressions for the vacuum
polarization amplitudes have been given in Ref. [45]. The effect for a heavy top was first calculated
in Ref. [46]. One finds

∆ρ =

√
2Gµ

16π2
3m2

tKQCD + · · · (135)

with

KQCD = 1− 2π2 + 6

9

αs
π

≃ 1− 2.860
αs
π

(136)

for asymptotically large mt, which is a large correction. Here, mt is assumed to be the on-shell
quark mass. We shall use below renormalization group (RG) improved perturbation theory using
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Figure 17: Results for ΓZ , Γinv and σpeak
had .
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theMS scheme. TheMS running massmi(µ) at scale µ is related to the on-shell mass at threshold
by [47]

mi = mi(mi)

(

1 +
4

3

αs(4m
2
i )

π

)

. (137)

Thus using a running top quark mass the leading top contribution changes to

∆ρ =

√
2Gµ

16π2
3mt(mt)

2K̄QCD + · · · (138)

with

K̄QCD = 1− 2π2 − 18

9

αs
π

≃ 1− 0.193
αs
π

(139)

and yields a correction which is smaller by more than a factor 10. Recently the numerically
important subleading terms have also been worked out [48,49]. At first, the corrections obtained
are not well-determined numerically because it is not so evident which scale should be chosen for
αs. Also finite corrections to the quark mass can change the result drastically as we have illustrated
with the above example (ambiguity in the definition of mt). Again, the problem can be controlled
better by using the representation

∆ρtop(0) = −
√
2Gµ

3π2
Re

∫ ∞

4m2
b

dsRρ(s) (140)

as a dispersion integral [29]. For the imaginary part Rρ(s) the perturbative result, known to two-
loop [50], can be used away from the resonance regions (since

√
s ≥ 2mb ≃ 10 GeV). If one evaluates

the dispersion integral numerically, one can use running parameters for the parametrization of the
absorptive part. This is precisely what one does in parametrizing the e+e− annihilation data for
R(s) where s-dependent parameters at scale

√
s are used. This we do for the other currents in

the same way. The resonance regions can be treated using semi-phenomenological quark potential
models. Using this approach, the QCD corrected heavy top contribution to ∆r has been calculated
in Ref. [51]. 9

Here we adapt the analytic approach of Refs. [45,46,48,49] and closely follow Ref. [49]. We will
use however running parameters as in Ref. [29], for example.

We denote by JAµ the hadronic part of the electroweak currents which couple to the gauge bosons
A = γ, Z or W . Expressed in terms of the vector and axial-vector quark currents

V q1q2
µ = q̄1γµq2 and Aq1q2µ = q̄1γµγ5q2 (141)

we have

Jγµ =
∑

i

(
2

3
ūiγµui −

1

3
d̄iγµdi)

JZµ = J3
µ − 2 sin2ΘWJ

γ
µ

J3
µ =

1

2

∑

i

(ūiγµ (1− γ5) ui − d̄iγµ (1− γ5) di )

JW
−

µ =
J1
µ + iJ2

µ√
2

=
1

2

∑

i

ūiγµ(1− γ5)di

(142)

9The authors of Ref. [51] use a different scale for the running coupling and treat masses as fixed on-shell
quantities.
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where ui and di stand for the upper and lower components of the weak isodoublets, respectively (i
is the family index). The self-energy functions are then given by

ΠAB
µν (q) = igAgB

∫

d4xeiqx < 0|TJAµ (x) JBν (0) |0 >

= −
(

gµν −
qµqν
q2

)

ΠAB
1 (q2) +

qµqν
q2

ΠAB
0 (q2) (143)

with gγ = e, gZ = g/(2 cosΘW ) and gW = g/
√
2. In the following we need the transverse

amplitudes Π1 (q2) only, which we simply denote by Π (q2). Furthermore, we introduce the
subtracted amplitudes Π′ (q2) by

Π (s) = Π (0) + sΠ′ (s) (144)

and use Π (0) = 0 for the flavor diagonal vector currents. 10

According to Eqs. (143) and (142) the vector boson self-energies are determined by QCD vac-
uum polarization functions ΠNC

V,A(s,mi) and ΠCC
V,A(s,m1, m2) of the vector (V) and axial-vector (A)

currents Eq. (141). Explicitly, we have

Πγγ = e2Q2
iΠ

NC
V (s,mi)

ΠZγ =

(

eg

4cW
|Qi| −

e2sW
cW

Q2
i

)

ΠNC
V (s,mi)

ΠZZ =

(

g2

16c2W

)

((

1− 8s2W |Qi|+ 16s4WQ
2
i

)

ΠNC
V (s,mi) + ΠNC

A (s,mi)
)

ΠWW =

(

g2

8

)

(

ΠCC
V (s,m1, m2) + ΠCC

A (s,m1, m2)
)

. (145)

For the charged currents we restrict ourselves to consider the approximation mb = 0. In this case

ΠA (s,mt, 0) = ΠV (s,mt, 0) ≡ ΠW (s,mt, 0) .

The contributions we are considering correspond to the diagrams depicted in Fig. 18.

+ +
V g g

g

Figure 18: Gluonic corrections to quark loops.

Before we discuss the QCD corrections in detail, let us summarize the representations of the
parameter renormalizations in terms of the self-energy contributions. The various quantities of
interest are the following:

∆ρ =
ΠZ(0)

M2
Z

− ΠW (0)

M2
W

+ 2
sW
cW

ΠγZ(0)

M2
Z

∆ρ̂ =
ΠZ(M

2
Z)

M2
Z

− ΠW (M2
W )

M2
W

+
sW
cW

ΠγZ(M
2
Z) + ΠγZ(0)

M2
Z

= ∆ρ− s2W
c2W

∆1 +∆2

∆ρ̄ = ∆ρ+
ΠZ(M

2
Z)

M2
Z

− ΠZ(0)

M2
Z

−
(

dΠZ

dq2

)

(M2
Z) = ∆ρ+∆Z

10The canonical divergences of the currents Eq. (141) are ∂µV q1q2
µ = i (m1 − m2) q̄1q2 and ∂µAq1q2µ = i (m1 +

m2) q̄1γ5q2.
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∆W =
ΠW (M2

W )

M2
W

− ΠW (0)

M2
W

−
(

dΠW

dq2

)

(M2
W )

∆κ =
c2W
s2W

∆ρ̂ =
c2W
s2W

∆ρ−∆1 +
c2W
s2W

∆2

∆e = Π′
γ(0)− Π′

W (M2
W ) +

cW
sW

Π′
γZ(M

2
Z) = ∆α +∆1 +∆2

∆̄ =
cW
sW

{

ΠγZ(M
2
Z)

M2
Z

− ΠγZ(0)

M2
Z

−
(

dΠγZ

dq2

)

(0)

}

= ∆α−∆α2 (146)

where

∆ρ = g2
(

Π̂33(0)− Π̂±(0)
)

/M2
W

∆1 = g2
(

Π̂′
3γ(M

2
Z)− Π̂′

33(M
2
Z)
)

∆2 = g2
(

Π̂′
33(M

2
Z)− Π̂′

±(M
2
W )
)

∆α = e2
(

Π̂′
γγ(0)− Π̂′

γγ(M
2
Z)
)

∆α2 = g2
(

Π̂′
3γ(0)− Π̂′

3γ(M
2
Z)
)

(147)

in terms of vacuum matrix elements of the currents Eq. (142). Using this notation we have, for
example,

∆r = ∆e−∆κ = ∆α − c2W
s2W

∆ρ+ 2∆1 +

(

1− c2W
s2W

)

∆2 (148)

∆r̄ = ∆e−∆ρ̂ = ∆α−∆ρ+
1

c2W
∆1 .

The heavy quark QCD corrections to the parameter shifts are now determined by the real parts
of the self-energy functions Eq. (145). For the top-bottom doublet the contributions are given by

∆ρ =
g2

4M2
W

αs
4π

Re
{

ΠNC
V (0, mt) + ΠNC

V (0, mb)

+ΠNC
A (0, mt) + ΠNC

A (0, mb)− 4ΠCC
W (0, mt, mb)

}

∆αi = −e2Q2
i

αs
π
Re

{

Π′NC
V (M2

Z , mi)− Π̇NC
V (0, mi)

}

∆αi2 = −g2 |Qi|
4

αs
π
Re

{

Π′NC
V (M2

Z , mi)− Π̇NC
V (0, mi)

}

∆i
1 =

g2

16

αs
π
Re
{

Π′NC
V (M2

Z , mi)− Π′NC
A (M2

Z , mi)− (2− 4|Qi|)Π′NC
V (M2

Z , mi)
}

∆
(tb)
2 =

g2

16

αs
π
Re
{

Π′NC
A (M2

Z , mt) + Π′NC
V (M2

Z , mt)

+Π′NC
A (M2

Z , mb) + Π′NC
V (M2

Z , mb)− 4Π′CC
W (M2

W , mt, mb)
}

∆i
Z =

g2

16c2W

αs
π
Re

{

Π′NC
A (M2

Z , mi)− Π̇NC
A (M2

Z , mi)

+(1− 8s2W |Qi|+ 16s4WQ
2
i )
(

Π′NC
V (M2

Z , mi)− Π̇NC
V (M2

Z , mi)
)}

∆
(tb)
W =

g2

4

αs
π
Re
{

Π′CC
W (M2

W , mt, mb)− Π̇CC
W (M2

W , mt, mb)
}

.

(149)

The explicit expressions are given in the Appendix. If applied to the process e+e− → f f̄ away
from the resonance M2

Z should be replaced by s in these expressions.
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We are considering now the QCD corrections to the γ, Z → qq̄ final states [52]. They are given
by the imaginary parts of the same amplitudes. At the Z-peak this is incorporated in the QCD
corrections to the hadronic partial widths. For the light flavors this is determined to O(α2

s) by
δQCD Eq. (89). For the b flavor mass corrections have to be included. In addition the O(α2

s)
term is modified by a singlet contribution to the axial amplitude which is due to large weak
isospin breaking by the large mass difference in the tb-doublet [53]. This correction is given by the
imaginary part of the three-loop diagram of Figure 19.

V

g

g

Figure 19: Diagram giving a singlet contribution to the weak axial currents

Analytically the result is given by

δΓA(bb̄) = −1

3
(αs/π)

2I((MZ/2mt)
2)Γ0A (150)

where Γ0A is the axial contribution to quark parton Z decay width. The function I(x), for 2mt ≥
MZ and mb = 0, is given by

I(x) = −6L− 1

2
ϕ2 +

15

4

+
√

1/x− 1 {−2Cℓ2(ϕ) + ϕ(−2L+ 3)

+ (1/x)[Cℓ2(ϕ) + ϕ(L− 1)]}
+(1/x)(ϕ2 + 1)

+(1/x2)[Cℓ3(ϕ) +
ϕ

2
Cℓ2(ϕ)− ζ(3)] (151)

where ϕ = 2arcsin
√
x and L = ln(MZ

mt
) and Cℓ2,3 are Clausen integrals [54]. For our purpose a

perfect approximation is [53]

I(x) ≃ 9.250− 1.037x− 0.632x2 − 6L (152)

For the Z → bb̄ width we get

Γb = 3ρbΓ0ν(v
2
bKQCD,V b + a2bKQCD,Ab)(1 +

3Q2
bα

4π
) (153)

with

KQCD,V b = 1 +
αs
π
(1 + 3yb) + 1.405(

αs
π
)2

KQCD,Ab = 1− 3

2
yb +

αs
π
(1− 3

2
yb(1 + 4 ln(

mb

MZ

)) + (1.405− I(xt)/3)(
αs
π
)2

Here yb = 4m2
b/M

2
Z and xt =M2

Z/4m
2
t .

We finally consider the forward-backward asymmetry AFB = σF−σB
σF+σB

. In lowest order it is given
by

AFB(s) =
∆FB(s)

σ0(s)
(154)
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with (yf = (1− 4m2
f

s
))

∆ff̄
FB(s) = −αQf

√
2GµM

2
Z

2s
NcfReχaeaf yf (155)

+
G2
µM

4
Z

2πs
Ncf |χ|2vevfaeaf yf

and σ0(s) the total cross-section. QCD corrections can be obtained if we replace 3
4
Q2
f → 1 in the

QED final state corrections. If no cuts are applied ∆FB(s) remains uncorrected in the zero mass
approximation [52]. If mass effects are taken into account the correction may be approximated by
[55]

∆FB(s) → ∆FB(s) (1 + f
αs
π
) (156)

where

f =
4π

3

mf√
s
+

8x

3

(

9

2
+
π2

8
+

1

8
(lnx)2 − 3

2
ln x− 5

2
ln 2

)

(157)

with x = m2
f/s. Together with the correction (1 + αs

π
) in the total cross section one obtains

AFB(s) → AFB(s)

(

1− αs
π

(1− 4π

3

mf√
s
)

)

(158)

to a good approximation.

So far we have treated the quark masses as on-shell masses in the same way as leptons. Due to
the convergence problems with perturbative QCD we have to use renormalization group improved
(leading log resummed) perturbation theory. As usual, we use the convenient MS-scheme. For
the finite dimensionless absorptive parts Rρ(s) in the dispersion integrals the solution of the RG
equation reads

Rρ

(

m2
0

s
, g0

)

= Rρ

(

m2(µ)

s
, g(µ)

)

; µ =
√
s (159)

if s0 is a data point where g0 = g(µ0) and m0 = m(µ0) have been determined. g(µ) is the
running coupling constant and m(µ) is the running mass in the MS scheme. To order O(α2

s), with
αs = g2/4π, we have

4

β0αs(µ)
− β1
β2
0

ln

(

4π

β0αs(µ)
+
β1
β2
0

)

= ln(µ2/Λ2) (160)

where the effective RG invariant scale Λ = Λ
Nf

MS
(≤ µ0) is defined in terms of the reference

coupling αs(µ0) at scale µ0 =
√
s0. The iterative solution of Eq. (159) in terms of inverse powers

of L = ln(µ2/Λ2) (µ≪ Λ) yields

αs(µ) =
4π

β0L





1 +
β1
β2
0

ln
(

L+ β1
β2
0

)

L
+ · · ·







−1

. (161)

The running mass is determined by

mi(µ) = mi(µ0)
r(µ)

r(µ0)

r(µ) = exp−2

[

γ0
β0

ln
4π

β0αs(µ)
+

(

γ0
β0

− 4γ1
β1

)

ln

(

1 +
β1
β0

αs(µ)

4π

)]

(162)
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in terms of a reference current quark mass mi(µ0). The RG coefficients are given by

β0 = 11− 2
3
Nf ; β1 = 102− 38

3
Nf

γ0 = 2 ; γ1 = 101
12

− 5
18
Nf

(163)

The integration constants Λ and mi(µ0) depend on the effective number of flavors Nf at a given
energy. Their dependence on Nf is determined by continuity of αs(µ) and mi(µ) at the flavor
thresholds [56].

Applying the heavy quark QCD corrections to the parameter renormalizations we obtain the results
of Figs. 20 and 21.

Figure 20: QCD corrections for the heavy top contribution to sin2Θ

Using RG improved perturbation theory clearly makes the QCD corrections small and leads to
much better control of the uncertainties. In particular we no longer obtain a large discrepancy
between using analytic expressions or doing the dispersion integrals numerically using running
parameters under the integral. In addition, corresponding QCD corrections to the Zbb vertex
have not been calculated to our knowledge. Using a scheme which yields large QCD corrections we
would expect additional large corrections for all quantities depending on Zbb vertex corrections.
For the MS scheme we can hope that these corrections are small as well.

Appendix: Explicit Expressions

We use the following notation

y = (m1 +m2)
2/s = x−1

where m1 = m2 = mt or mb for the NC amplitudes and m1 = mt and m2 = mb for the CC
amplitudes. We shall assume mb = 0 whenever this limit exists.

In the NC case we conveniently use the variable

ξ =

√
1− y − 1√
1− y + 1

taking values
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Figure 21: QCD corrections for the heavy top contribution to ∆ρ

0 ≤ ξ ≤ 1 for s ≤ 0
ξ = eiϕ, 0 ≤ ϕ ≤ π for 4m2 ≥ s ≥ 0

−1 ≤ ξ ≤ 0 for 4m2 ≤ s .

Using the abbreviations

f = −1

2
ln ξ; g = ln(1− ξ); h = ln(1 + ξ)

and

∆Li3 = 2Li3(ξ)− Li3(ξ
2)

∆Li2 = Li2(ξ)− Li2(ξ
2)

we define

AA = −4

3
(∆Li2 + Ref (2h+ g))

BB = −8

3
(2h+ g + 3Ref)

XX = ∆Li3 +
8

3
f ∆Li2 +

4

3
f 2 (2h+ g)

YY =
8

3
(∆Li2 + 2f (2h+ g) + 3f 2) .

In terms of these functions we find the following expressions for the two-loop QCD vacuum polar-
ization amplitudes: (Π̇ = dΠ

ds
and ℓ ≡ ln m2

µ2
)

π

m2
ImΠNC

V = (4x− 1/x) AA +
√

1− 1/x ((x+ 1/2) BB + (x+ 3/2))

+(8x− 4/3− 7/(6x)) Ref ; x ≥ 1
π

m2
ImΠNC

A = (4x− 6 + 2/x) AA +
√

1− 1/x ((x− 1) BB + (x− 3 + 1/(4x)) )
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+(8x− 22/3 + 5/(6x) + 1/(4x2)) Ref ; x ≥ 1

π2

m2
ReΠNC

V = (4x− 1/x) XX +
√

1− 1/x ((x+ 1/2) YY − 2 (x+ 3/2) f )

−(8x− 4/3− 7/(6x)) f 2 + 13/6 + ζ(3)/x+ x (55/12− 4ζ(3)− ℓ− 1

d− 4
)

π2

m2
ReΠNC

A = (4x− 6 + 2/x) XX +
√

1− 1/x ((x− 1) YY − 2 (x− 3 + 1/(4x)) f)

−(8x− 22/3 + 5/(6x) + 1/(4x2)) f 2

+13/6− 3ζ(2)− 2ζ(3)/x+ 1/(4x) + x (55/12− 4ζ(3)− ℓ− 1

d− 4
)

+(−11/8 + 6ζ(3) + 3ζ(2)− 11/2ℓ+ 3ℓ2 +
2

d− 4
(3ℓ− 11/4) +

6

(d− 4)2
)

4π2 ReΠ̇NC
V = (4 + 1/x2) XX +

√

1− 1/x (−1/(2x) YY − (2− 5/(3x)) f )

+(16/(3x) + 13/(6x2) + 4/(x2(x− 1))) f 2

−1− 3/(2x)− ζ(3)/x2 + (55/12− 4ζ(3)− ℓ− 1

d− 4
)

4π2 ReΠ̇NC
A = (4− 2/x2) XX +

√

1− 1/x (1/x YY − (2 + 13/(3x)− 1/x2) f )

−(20/(3x)− 13/(6x2)− 1/(2x3)) f 2

−1 + 3/x+ 2/x2ζ(3)− 1/(2x2) + (55/12− 4ζ(3)− ℓ− 1

d− 4
) (164)

in agreement with Ref. [49]. The UV singular terms proportional to 1/(d − 4) as well as the
renormalization scale µ dependent terms cancel in the physical quantities given below. In the MS
scheme 1

d−4
+ ℓ ≡ −1/2 ln(µ2/m2). We have written the r.h.s as analytic functions. The imaginary

parts are nonzero only for s ≥ 4m2. The real parts are evaluated as follows: In the physical
regions s ≤ 0 and s ≥ 4m2 the functions h and g and the di- and tri-logarithms (Li2(ξ), Li3(ξ))
are real. While in the space like region f is also real, in the timelike physical region, s ≥ 4m2,
ln ξ = ln |ξ|+ iπ and the only changes are the replacements f 2 → (Ref)2 − π2

4
and f → Ref . In

the unphysical region 0 ≤ s ≤ 4m2 we have to replace

ln ξ → iϕ
√

1− 1/x → −
√

1/x− 1

XX → ReXX = Re∆Li3 +
8

3

ϕ

2
Im∆Li2 +

4

3
(−ϕ

2

4
) Re(2h+ g)

YY → ImYY =
8

3
(Im∆Li2 − 2

ϕ

2
Re(2h+ g))

2h+ g → Re(2h+ g) = 2 ln(2
√
1− x) + ln(2

√
x)

f → Imf = −ϕ
2

f 2 → f 2 = −ϕ
2

4
(165)

where ϕ = 2 arcsin
√
x and

Im∆Li2 = Cℓ2(ϕ)− Cℓ2(2ϕ)

Re∆Li3 = 2Cℓ3(ϕ)− Cℓ3(2ϕ)

are given by differences of Clausen functions.
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The two-loop contribution to the Adler function related to the QCD vector neutral current vacuum
polarization amplitude it is given by

Π̇
′(2)
V =

1

3

(

ReΠNC
V (s)/s− ReΠ̇NC

V (s)
)

.

Explicitely:

12π2 Π̇
′(2)
V = −2y2XX +

√

1− y ((1 + y) YY − 14/3 y f )

+
(

3y2 − 4− 4/(1− y)
)

f 2

+1 + 11/3 y + 2y2 ζ(3) .

For the CC amplitudes (taking mb = 0), we introduce the abbreviations

a = ln(−x); b = ln(1− x)

α = ln(x); β = ln(x− 1)

and define, in analogy to the NC case,

AA =
1

6
(−2Li2(

1

1− x
) + αβ − β2)

BB =
α

6

XX = −Li3(x)− Li3(
−x
1− x

) +
2

3
b Li2(x) +

b

6
(b2 − 2ζ(2))

YY =
1

6
Li2(x) .

The charged current (W-propagator) two-loop QCD vacuum polarization then reads

π

m2
ImΠCC

W = (2x− 3 + 1/x2) AA + (2x+ 1− 1/x) BB

+(4x− 3− 6/x+ 5/x2)
−β
12

+(6x− 15 + 4/x+ 5/x2)
1

24
; x ≥ 1 .

π2

m2
ReΠCC

W = (2x− 3 + 1/x2)
1

2
XX + (2x+ 1− 1/x) YY

+(4x− 3− 6/x+ 5/x2)
b2

24

+(6x− 15 + 4/x+ 5/x2)
−b
24

+
ζ(3)

2
(2x− 3) +

ζ(2)

12
(4x− 7− 2/x) + 13/12− 5/(24x)

+
1

4
x (55/12− 4ζ(3)− ℓ− 1

d− 4
)

+
1

4
(−11/8 + 6ζ(3) + 3ζ(2)− 11/2ℓ+ 3ℓ2 +

2

d− 4
(3ℓ− 11/4) +

6

(d− 4)2
)
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π2 ReΠ̇CC
W = (1− 1/x3) XX + (1/x+ 2/x2) YY

+(1 + 1/x− 2/x2)
b2

4x

+(3 + 1/x+ /x2 − 5/x3)
−b
12

+ζ(3) +
ζ(2)

6x
(1 + 2/x)− 1

24
(6− 9/x− 10/x2)

+
1

4
(55/12− 4ζ(3)− ℓ− 1

d− 4
) (166)

in this form given in Ref. [49]. The formula for the derivative is new. The expressions for the real
parts are adequate for x ≤ 1, where all quantities on the r.h.s. are real. For x ≥ 1 one uses

XX → ReXX = Li3(
1

1−x) +
2
3
βLi2(

1
1−x) + (β

2

6
− ζ(2)) (β − α)− ζ(3)

YY → ReYY = 1
6
(Li2(

1
1−x)− αβ + 1

2
β2 + 2ζ(2) )

b2 → Re b2 = β2 − 6ζ(2)
b → Re b = β .

(167)

amplitudes of the flavor diagonal vector current.

Addendum: General results
a) Large momentum expansion:
Using the same notation for the vacuum polarization functions as in the one–loop case, and defining
the latter similarly to eq. (2.3)

Πij
T,L(s) =

α

π

αS
π

[

vivjΠV
T,L(s) + aiajΠA

T,L(s)
]

one obtains for ΠV,A
T,L(s) in the limit |s| → ∞

ΠV,A
T (|s| → ∞) = s

[

1

ǫ
− 1

2
(ρa + ρb) +

1

2
(logα + log β) +

55

12
− 4ζ(3)

]

+ (ma ∓mb)
2
[

6

ǫ2
+

1

ǫ

(

11

2
− 3ρa − 3ρb

)

− 11

4
(ρa + ρb)−

11

8

+
3

4
(ρa + ρb)

2 − 9

4
(logα + log β)− 3

2
logα log β + 6ζ(3)

]

+ (m2
a −m2

b) log
m2
a

m2
b

[

−3

ǫ
+

3

2
(ρa + ρb)−

3

4
(logα+ log β) +

3

4

]

+ 3(m2
a +m2

b)(logα + log β)

ΠV,A
L (|s| → ∞) = (ma ∓mb)

2
[

6

ǫ2
+

1

ǫ

(

11

2
− 3ρa − 3ρb

)

− 11

4
(ρa + ρb)−

3

8

+
3

4
(ρa + ρb)

2 − 9

4
(logα + log β)− 3

2
logα log β + 6ζ(3)

]

+ (m2
a −m2

b) log
m2
a

m2
b

[

−3

ǫ
+

3

2
(ρa + ρb)−

3

4
(logα+ log β)− 5

]

with α = −m2
a/s, β = −m2

b/s and ζ(3) = 1.202. At this stage a few remarks are mandatory.

i) In the previous expressions the momentum transfer is defined in the space–like region, s < 0.
The continuation to the physical region can be straightforwardly obtained by adding a small
imaginary part −iǫ to the quark masses squared. This reduces to make the substitutions
log(m2

a,b/− s) → log |m2
a,b/− s|+ iπ.

59



ii) As expected, only the transverse part of the vacuum polarization function is quadratically
divergent for |q| → ∞. This divergent term, the expression of which is in agreement with
the one obtained in Ref. [?], is the same for axial and axial–vector currents as expected from
chiral symmetry. Moreover, as required by the Kinoshita–Lee–Nauenberg theorem [?], this
term does not introduce any mass singularity asma,b tend to zero: −(ρa+ρb) and logα+log β
combine to give 2 log(µ2/− s).

iii) Since the vector part of the longitudinal component should vanish for ma = mb, it must
be proportional to (ma − mb) or (m2

a − m2
b); and since the axial–vector component can be

obtained by changing the sign of one of the two masses, it must be proportional (ma +mb)
or (m2

a −m2
b) [logm

2
a/m

2
b alone would have introduced mass singularities]. This behavior is

explicitely exhibited by the previous expression of ΠV,A
L (s).

Let us now write the real parts of ΠV,A
T (s), analogously to eq. (2.10),

ΠV,A
T (s) = sX̃2 + (ma ∓mb)

2Ỹ2 + (m2
a −m2

b) log
m2
a

m2
b

Z̃2 + F V,A
2 (s)

where the two–loop divergent constants X̃2, Ỹ2 and Z̃2 involve only the poles in ǫ and the logarithms
of the scale µ of the expressions of eq. (3.3); they are given by

X̃2 =
1

ǫ
− log

mamb

µ2

Ỹ2 =
6

ǫ2
+

2

ǫ

(

11

4
− 3 log

mamb

µ2

)

− 11

2
log

mamb

µ2
+ 3 log2

mamb

µ2

Z̃2 = −3

ǫ
+ 3 log

mamb

µ2

b) Low momentum expansion:

We come now to the discussion of the zero–momentum transfer behavior of the vacuum polarization
functions. In this limit, the evaluation of the two–loop diagrams Fig. 1b in the on–shell mass
scheme, leads to the following expression for ΠV,A

T,L(0)

ΠV,A
T,L(0) =

6

ǫ2
(m2

a +m2
b) +

2

ǫ

[

11

4
(m2

a +m2
b)− 3m2

aρa − 3m2
bρb

]

− 11

2
(m2

aρa +m2
bρb)

+ 3m2
aρ

2
a + 3m2

bρ
2
b +

35

8
(m2

a +m2
b) +

1

4
(m2

a −m2
b)

[

G

(

m2
a

m2
b

)

−G

(

m2
b

m2
a

)]

+
m2
am

2
b

m2
a −m2

b

log
m2
a

m2
b

+m2
am

2
b

m2
a +m2

b

(m2
a −m2

b)
2
log2

m2
a

m2
b

± mamb

[

−12

ǫ2
+

2

ǫ

(

3ρa + 3ρb −
11

2

)

− 3

2
(ρa + ρb)

2 + 4(ρa + ρb)−
31

4

+ 3
m2
aρb −m2

bρa
m2
a −m2

b

+ 3
m2
am

2
b

(m2
a −m2

b)
2
log2

m2
a

m2
b

]

where, in terms of the Spence function defined by Li2(x) = − ∫ 10 y−1 log(1− xy)dy, the function G
is given by

G(x) = 2Li2(x) + 2 log x log(1− x) +
x

1− x
log2 x
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As one might have expected, there is no singularity in the self–energies in this limit. In addition,
besides the manifest symmetry in the exchange ma ↔ mb, the previous expressions exhibit the
facts that ΠV,A

T,L(0) can be obtained from ΠA,V
T,L (0) by simply making the substitution ma(mb) →

−ma(−mb) as expected from γ5 reflection symmetry and that the longitudinal and transverse
components are equal. These features provide good checks of the calculation.

Using the previous expression, one readily obtains the QCD corrections to the contribution of
a heavy quark isodoublet to the ρ parameter in the general case ma 6= mb 6= 0. Defining the
contribution to the ρ parameter analogously to eq. (2.15)

∆(2)ρ =

√
2GF

8π2

αs
π
f2(0, ma, mb)

the function f2 will be given by

f2(0, ma, mb) = −3

{

m2
a +m2

b + 2
m2
am

2
b

m2
a −m2

b

log
m2
a

m2
b

[

1 +
m2
a +m2

b

m2
a −m2

b

log
m2
b

m2
a

]

+ (m2
a −m2

b)

×
[

2Li2

(

m2
a

m2
b

)

+ 2 log
m2
a

m2
b

log

(

1− m2
a

m2
b

)

− m2
a

m2
a −m2

b

log2
m2
a

m2
b

− π2

3

]}

f2(0, ma, mb) is free of ultraviolet divergences as it should be since ∆ρ is an observable physical
quantity; furthermore it does not depend on the ’t Hooft mass scale µ. Note that the symmetry in
the interchange ofma andmb is now hidden in the term in the last line of the previous equation, but
this term is simply G(m2

a/m
2
b)−G(m2

b/m
2
a) and we have used the fact that G(1/x)+G(x) = 2π2/3.

In the limit of large mass splitting between the two quarks, ma ≫ mb, the QCD corrections to the
ρ parameter reduce to the known result for mb = 0 [?]

f2(0, ma, 0) = −2

3
f1(0, ma, 0)

αS
π

(

1 +
π2

3

)
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5. THE Z LINE-SHAPE

To lowest order, the total cross-section for e+e− → f f̄ is given by Eq. (46)

σ0 =
4π

3

α2Q2
f

s
NcfR

f
v (168)

−2αQf

√
2GµM

2
Z

3s
NcfReχvevfR

f
v

+
G2
µM

4
Z

6πs
Ncf |χ|2(v2e + a2e)(v

2
fR

f
v + a2fR

f
a)

where

χ(s) =
s

s−M2
Z + iMZΓZ(s)

(169)

is the Z-resonance factor. The three terms represent the QED, the γZ -interference and the
Z-exchange contributions. The functions

Rf
v =

√

1− 4m2
f

s
(1 +

2m2
f

s
), Rf

a =

√

1− 4m2
f

s
(1− 4m2

f

s
)

describe the dependence on the mass of the final state particles. For the light fermions Rf
v ≃ Rf

a ≃
1. The s-dependent “width”, appearing in the Z propagator in Eq. (169), is determined by the
imaginary part of the Z self-energy MZΓZ(s) = ImΠZ(s) [57]. To lowest order one has

ΓZ(s) =

√
2GµMZs

3π

∑

f

Ncf(v
2
fR

f
v + a2fR

f
a) (170)

≃
√
2GµMZs

3π

∑

f

Ncf(v
2
f + a2f ) =

s

M2
Z

ΓZ .

The s dependence of the width causes a large shift by ∆E = − Γ2
Z

2MZ
of the maximum of the peak

(see below).

Near the Z-resonance the weak corrections can be included using Eq. (106) and α → α(M2
Z) ≃

(128.797(123))−1 in the Born formula. Away from the resonance this approach may be generalized
by evaluating the the ρf ’s and κf ’s at s = 4E2

b 6= M2
Z (Eb the beam energy), thereby they are no

longer gauge invariant and the box contributions must be included

σtot = σ0,eff + δσbox (171)

in order to get a gauge invariant cross-section. However, numerically it turns out that the box
contributions are negligible (∼< 0.05% within MZ ± 10 GeV) in the ’t Hooft-Feynman gauge.

Using the effective parameters one arrives at an improved Born approximation which in the reso-
nance region takes the form [57-60]

σeff(s) =
12πΓ̂eΓf
|D(s)|2

{

s

M2
Z

+Rf
s−M2

Z

M2
Z

+ If
ΓZ
MZ

+ · · ·
}

+ σfQED (172)

where

D(s) = s−M2
Z + iMZΓZ(s) , ΓZ(s) = ΓZ

{

s

M2
Z

+ ε
s−M2

Z

M2
Z

+ · · ·
}
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and

σfQED =
4πα2(M2

Z)Q
2
fNcfKQCD

3s
≃
{

0.006 σfpeak (f = µ, τ)

0.001 σfpeak (hadrons)
(173)

the QED background term. Since initial state radiation will be taken into account separately we
have replaced Γe by Γ̂e = Γe/(1 + 3α

4π
). The expansion Eq. (172) near the peak makes use of

the fact that
s−M2

Z

M2
Z

and ΓZ

MZ
are of order O(α) near the resonance. The correction terms Rf , If

and ε are calculable functions within the Standard Model [60]. If and ε represent absorptive
effects depending on known particles in the spectrum up to the Z mass only. The correction
ε =

∑

f εf , which takes into account possible final state mass effects (according to Eq. (170)

εf ≃ 6m2
f

M2
Z

Γf

ΓZ

a2
f

v2
f
+a2

f

≃ 1.7 × 10−3 (f = b)), is negligible for all the 5 known light fermions. The

correction If leads to a small change of the normalization of the peak by (1 + If ΓZ

MZ
), whereas

the effect of Rf is a slight shift to the right of the maximum of the peak. The leading (tree level)
contribution to Rf is the γ-Z interference term (see Eq. (168))

Rf =
8QeQfvevf

(v2e + a2e)(v
2
f + a2f)

πα(M2
Z)√

2GµM2
Z

+ · · · . (174)

Notice that an extra neutral vector boson Z ′ would yield an additional interference term

∆Rf =
2 (v′eve + a′eae)(v

′
fvf + a′faf )

(v2e + a2e)(v
2
f + a2f)

g′2√
2Gµ(M

2
Z −M2

Z′)
(175)

if we assume the coupling is given by

LZ′

NC,int = g′Z ′
µf̄γ

µ (v′f − a′fγ5) f . (176)

All other contributions are small loop-corrections. Numerical values are given in Table 8. For If
the values range from ≃ −1.0 × 10−2 for lower top masses to ≃ −2.2 × 10−2 for mt = 230 GeV.
Within the Standard Model the effects of the corrections Ifand ε to the line-shape are negligible.

Since Eq. (172) models the Z-peak to high accuracy, a model-independent fit with 4 parameters,
the cross-section at maximum (normalization), MZ , ΓZ and Rf , is possible for each flavor f .
Thus, the measurement of σ(e+e− → f f̄) at 5 different beam energies will fully determine the
characteristics of the Z-resonance.

We ignore the corrections Rf , If , ε and σfQED, for the moment. Then, σeff (s) differs from a
Breit-Wigner (BW) form only by the s-dependence of the width, i.e. by a substitution

s−M2
Z + iMZΓZ → s−M2

Z + isΓZ/MZ = (1 + iγ)(s− M̃2
Z + iM̃Z Γ̃Z)

with

M̃Z =MZ (1 + γ2)−1/2, Γ̃Z = ΓZ (1 + γ2)−1/2, γ =
ΓZ
MZ

=
Γ̃Z

M̃Z

. (177)

Thus, with σBW (s =M2
Z) = σpeakf , we may write

σeff (s) = σBW (s =M2
Z) ·

sΓ̃2

(s− M̃2)2 + M̃2Γ̃2
(178)
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as a Breit-Wigner resonance in the reduced parameters Eq. (177) [61]. By Eq. (177), the peak
gets shifted by M̃Z −MZ ≃ −34 MeV and narrowed by Γ̃Z − ΓZ ≃ −1 MeV (negligible). The
peak height remains unchanged.

If we ignore σfQED in Eq. (172), the position of the peak is at

√
smax = M̃Z (1 + γ2(1 +Rf ))

1/4 (179)

with

σeff,max = σpeakf

(1 + γ2)1/2 + 1

2
(1 + Ifγ) (180)

and right and left half-maxima at

√
s± ≃

(

M̃Z (1 + γ2)1/2 ± Γ̃Z
2

)

/(1 + γ2(1− 4Rf ))
1/8. (181)

The slowly varying QED background term slightly rises the peak such that the width of the peak
measured between the half-maxima appears increased by δ(

√
s+ − √

s−) ≃ ΓZ · σQED

σpeak
≃ 15 MeV

for (f = µ, τ). This term will be enhanced by QED corrections to δ(
√
s+ − √

s−) ≃ ΓZ · σ
obs
QED

σobs
peak

≃
30 MeV.

In order to obtain the observed cross-section, we have to include the QED corrections, the virtual,
soft and hard photon effects. Particularly important is the initial state radiation which leads to

+ + +

+ + + +

+ + + +

+ + +

e+ f̄

e− f

γ, Z
γ

γ

γ

γ

γ

γ

γ

γ(Z)

Z(γ)

γ(Z)

Z(γ)

Figure 22: O(α) QED corrections to e+e− → f f̄

huge corrections in the line shape. Multi soft-photon emission must be taken into account in order
to reach the precision needed. Due to initial-state photon emission the shape of the resonance is
changed according to the convolution integral

σobsini (s) =
∫ kmax

0
dk ρini(k)σeff (s(1− k)) (182)

where ρini(k) is the photon radiation spectrum [62], which has been calculated up to two-loop order
[63]. The variable k = Eγ/Eb is the energy of the emitted photon in units of the beam energy, such
that s′ = s (1− k) is the effective s available for Z-production after the photon has been emitted.
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kmax is the maximum photon energy accepted, kmax = 1− s0/s in terms of the minimum invariant
mass s0 ≥ 4m2

f needed to identify the final state f f̄ pair.

The structure of the photon distribution function is

ρini(k) = βkβ−1(1 + δv+s1 + δv+s2 ) + δh1 + δh2 (183)

with β = 2α
π

(

ln s
m2

e
− 1

)

≃ 0.1077 . The infrared sensitive part has been exponentiated, which

takes into account multi soft photon emission [64]. Exponentiation leads to a shift of the peak by
∆E = 14 MeV. The corrections are given by ( v+s = virtual+soft, h = hard)

δv+s1 =
α

π

(

3

2
L+

π2

3
− 2

)

(184)

δv+s2 =
(

α

π

)2
(

(
9

8
− π2

3
)L2 + s21L+ s20

)

δh1 =
α

π
(1− L)(2− k)

δh2 =
(

α

π

)2

(h22L
2 + h21L+ h20)

where L = ln s
m2

e
(≃24.18), h22 = −1+(1−k)2

k
ln(1 − k) + (2 − k)(1

2
ln(1 − k) − 2 ln k − 3

2
) − k and

the other two-loop correction coefficients s2i and h2i are given in [63]. The main influence on the
Z line-shape is a reduction of the peak height

(

σobs

σeff

)

peak

≃
(

ΓZ
MZ

)β

(1 + δv+s1 ) + · · ·+ σQED(1 + δNRQED)

σpeak
(185)

≃ 0.738 + · · · ≃
{

0.744 f = µ, τ
0.739 hadrons

with an error ±0.001, and a shift of the maximum of the peak

√
smax ≃ MZ +

π

8
βΓZ − Γ2

Z

4MZ
(1−Rf ) + · · · (186)

≃ MZ + 108.4MeV − 17.0MeV + · · ·

≃ MZ +

{

92MeV f = µ, τ
93MeV hadrons .

The first correction is the QED effect the second the phase space effect which includes the effect
due to the s-dependence of the width in the Z-propagator, Eq. (169). To good accuracy, the
observed peak cross-section is represented by

σobspeak =

(

σobs

σeff

)

peak

12πΓeΓf
M2

ZΓ
2
Z

+ σobsQED(M
2
Z) (187)

where

σobsQED(M
2
Z) = σQED(M

2
Z)(1 + δNRQED)

δNRQED ≃
(

β

2
ln
M2

Z

s0f
+
β

4
+
α

π
(
π2

3
− 1

2
)

)

and s0f is the minimum invariant mass for the final state f f̄ pair. If we chose s0µ = 4m2
µ for muons

and s0h = (10 GeV)2 for hadrons we obtain δNRQED = 0.678 for leptons and 0.271 for hadrons.
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A very important observation is that this result is practically independent of the model dependent
correction ∆ρ, since the ratio (ΓeΓf)/Γ

2
Z is almost insensitive to the rescaling Γi → ρiΓi, because

the large contributions to ρi are universal if i 6= b. An exception is the top contribution from the
Zbb̄ vertex. The width can be extracted unambiguously from the location of the half-maxima

√
s+ −√

s− ≃ ΓZ (1 + (
π

4
β +

β

2
ln 2) (1 + β +

π

4
β) (188)

− π

2
βγ − 5

8
γ2 + · · ·+ σobsQED

σobspeak
(1 + β +

π

4
β))

≃ ΓZ +

{

396± 4MeV f = µ, τ
360± 3MeV hadrons

.

For a more detailed discussion we refer to Ref. [65].

The important observation is that, to high accuracy, these effects only depend on MZ and ΓZ and
universal QED corrections and phase space terms. This makes possible an unambiguous (model
independent) extraction of MZ and ΓZ from the line-shape. For numerical results see Tab. 8.

Table 8a. The Z line-shape for e+e− → µ+µ− (MZ = 91.176± 0.021 GeV,
αs = 0.117± 0.01). Masses and energies are in GeV. Results in the
upper (lower) part are before (after) QED corrections are taken into account.

mt mH σmax (nb)
√
smax

√
s−

√
s+ Rf · 102

90 100 2.001 91.159 89.920 92.416 2.50
110 100 2.003 91.159 89.919 92.418 2.64

130 50 2.003 91.159 89.916 92.420 2.89
130 100 2.004 91.159 89.917 92.420 2.80
130 1000 2.006 91.159 89.921 92.416 2.48

150 100 2.005 91.159 89.914 92.422 2.99
200 100 2.009 91.159 89.907 92.429 3.61
230 100 2.011 91.159 89.902 92.435 4.09
90 100 1.491 91.267 89.969 92.845
110 100 1.492 91.267 89.968 92.847

130 50 1.493 91.267 89.965 92.850
130 100 1.493 91.267 89.966 92.850
130 1000 1.494 91.267 89.969 92.844

150 100 1.495 91.268 89.964 92.853
200 100 1.498 91.268 89.957 92.863
230 100 1.501 91.269 89.951 92.870
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Table 8b. The Z line-shape for e+e− → hadrons

mt mH σmax (nb)
√
smax

√
s−

√
s+ Rf · 102

90 100 41.403 91.160 89.928 92.411 6.70
110 100 41.416 91.160 89.926 92.413 6.89

130 50 41.425 91.160 89.924 92.416 7.23
130 100 41.423 91.160 89.925 92.415 7.11
130 1000 41.430 91.160 89.928 92.411 6.67

150 100 41.439 91.160 89.922 92.418 7.35
200 100 41.474 91.160 89.915 92.425 8.08
230 100 41.501 91.160 89.910 92.431 8.61
90 100 30.635 91.268 89.986 92.826
110 100 30.649 91.268 89.985 92.828

130 50 30.661 91.268 89.983 92.831
130 100 30.659 91.268 89.983 92.831
130 1000 30.655 91.268 89.986 92.825

150 100 30.676 91.269 89.981 92.834
200 100 30.720 91.269 89.974 92.844
230 100 30.753 91.270 89.969 92.851

So far we have not discussed the QED corrections from initial-final state interference and from
final state radiation. Both are small if no tight cuts to the photon spectrum are applied. In any
case an O(α) calculation is sufficient for these corrections which are to be added to σobsini in Eq.
(182).

For the interference term we have

δσobsint (s) =
1

2
(δγγint(k0) + δγZint(k0) ) ∆

γZ
0f (s) + δγZint(k0) ∆

Z
0f (s)

+
∫ kmax

k0
dk ρint(k) ∆

ff̄
FB(s, s(1− k)) (189)

where, denoting z = (M2
Z − iMZΓZ)/s, [66]

δγγint(k0) =
4αQf

π
{2 ln k0 − k0 −

1

2
}

δγZint(k0) =
4αQf

π
{2 ln k0 + ln |z| −Re[z(z + 1) ln

k0 + z − 1

z
+ (z − 1)(1− k0)]} (190)

are the virtual contributions from the γγ-boxes and the γZ-boxes, respectively, plus the real photon
contribution (Eγ/Eb ≤ k0 ≤ kmax). ∆

γZ
0f and ∆Z

0f have been given in Eq. (48) and

ρint =
4αQf

π

2− k

k
(191)

is the photon radiation spectrum.
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Figure 23: QED corrections to the Z line shape.

The kernel ∆ff̄
FB(s, s

′) follows from the C-odd function ∆ff̄
FB(s) given in Eq. (198) below by sub-

stituting

Reχ(s) → 1

2
Re(χ(s) + χ∗(s′)) (192)

|χ|2(s) → Re(χ(s)χ∗(s′))

such that ∆ff̄
FB(s, s) = ∆ff̄

FB(s). Near resonance, where the γZ interference term in ∆FB(s) (first
term in Eq. (198)) is negligible, we have

δσintobs(s) ≃ 4αQf

π
{2 ln kmax + ln |z|

−Re[z(z + 1) ln
kmax + z − 1

z
+ (z − 1)(1− kmax)]} ·AFB(s) σ0(s).

For s ≃M2
Z and loose cuts (kmax ≃ 0.1−1) the bracket reduces to 1

2
(ΓZ/MZ)

2, which indeed leads

to a negligibly small contribution. For tight cuts the leading term in the bracket is 2 ln(k0
MZ

ΓZ
)

which again is small compared to the term 2 ln k0(ln
s
m2

e
− 1) sensitive to cuts from the initial state

bremsstrahlung and a similar term from final state radiation.

The final state radiation factors out, yielding

δσobsfin(s) =

(

δfin(k0) +
∫ kmax

k0
dkρfin(k)

)

σ0(s) (193)

with

δfin(k0) =
αQ2

f

π

(

2(Lf − 1) ln k0 +
3

2
Lf +

π2

3
− 2

)

(194)

the virtual plus soft photon contribution and

ρfin =
αQ2

f

π

1 + (1− k)2

k
(Lf − 1 + ln(1− k)) (195)
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Figure 24: Example for the observed hadronic cross-section.

the hard photon radiation spectrum. If no cut is applied (kmax = 1 − 4m2
f

s
≃ 1) we get the small

contribution

δσfinobs (s)/σ0(s) =
3αQ2

f

4π
≃ 0.00174 Q2

f (196)

which already has been included in the Γf ’s (Tab. 6) and which are used in the calculation of the
effective cross-section Eq. (172).

In Figure 23 we illustrate the QED corrections to the Z line-shape. Figure 24 shows some experi-
mental data points together with the SM prediction.

6. THE FORWARD BACKWARD ASYMMERTY

In Section 3 we have discussed the various definitions and properties of asymmetries at the Born
level. We have mentioned that the precision measurements of asymmetries, predominantly caused
by the parity-violation of the weak interactions, belong to the most important tasks for LEP1. Of
particular interest is the investigation of the asymmetries at the Z-resonance, where e+e− → f f̄
is practically a pure weak neutral current process, a fact which provides clean and precise tests of
the NC couplings of the different flavors (see Eq. (2-4) and Section 2). Here, we shall concentrate
on the discussion radiative corrections for the forward-backward asymmetry [67] AFB = σF−σB

σF+σB
(σF (B) = cross-section integrated over the forward (backward) hemisphere) which in lowest order
is given by Eq. (49)

AFB(s) =
∆FB(s)

σ0(s)
(197)

with (yf = (1− 4m2
f

s
))

∆ff̄
FB(s) = −αQf

√
2GµM

2
Z

2s
NcfReχaeaf yf (198)
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+
G2
µM

4
Z

2πs
Ncf |χ|2vevfaeaf yf

and σ0(s) the total cross-section given in Eqs. (46),(168). In Eq. (198) the first term is the
γZ-interference and the second the Z-resonance term.

At the resonance we have

Aff̄FB(s =M2
Z) =

3

4

2veae 2vfaf yf

(v2e + a2e)(v
2
fR

f
v + a2fR

f
a) + ( ΓZ

MZ
)2(16Q2

f sin
4Θf cos4ΘfR

f
v )

(199)

where the second term in the denominator is due to the QED background term in the total cross-
section.

The finite mass effects can be ignored if f 6= b. For the b-quark asymmetry Eq. (158) is a good
approximation.

If we neglect the small contribution σ0,QED (see Eq. (172)) to σ0(s), for s = M2
Z we obtain the

simple expression

Aff̄FB = Aff̄FB(s =M2
Z) =

3

4
AeAf (200)

with Af defined in Eq. (54) depending on sin2Θf only. The improved Born approximation again
follows by using the effective weak mixing parameter sin2Θf = κf sin

2ΘW as discussed extensively
in Section 4.3

The expected accuracies for Aff̄FB (or, equivalently, sin2Θf) are 0.0035 (0.0017) (f = µ), 0.007
(0.0012) (f=s), 0.007 (0.0015) (f=c) and 0.005 (0.0009) (f=b). For Aτpol 0.011 (0.0014). An inte-
grated luminosity of at least 100 pb−1 is assumed here.

Notice that AFB is largely insensitive to the normalization of the cross-section and the s-dependence
of the width, which are important for the line-shape.

Away from the resonance the correction factors ρf and κf must be evaluated at s 6=M2
Z (they are

no longer gauge invariant) and the box contributions must be included

Aff̄FB = (Aff̄FB)0,eff + δ(Aff̄FB)box (201)

in order to get a gauge invariant cross-section. Again, numerically the box contributions are
negligible (∼< 0.02% within MZ ± 10 GeV) for the ’t Hooft-Feynman gauge.

Due to the high precision required, leading higher order effects (beyond the one loop level) cannot
be neglected. For the real parts of the effective sin2Θf , Eq. (115) together with Eq. (124) provide
the correct summation of large higher order terms. The imaginary parts must be included as well

since they give rise to non-negligible a O(α2)-contribution ∆Aff̄FB = 0.002. In Figures 25 and 26
we compare the expermental results for AµFB and AbFB, respectively, with the theoretical prediction
as a function of the top mass. In Table 9 some numerical results are presented.
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Table 9. Results for Aff̄FB. (MZ = 91.17 GeV,
αs = 0.12, from Ref. [69]).

mt mH AℓFB AcFB AsFB AbFB Ae = ALR

90 100 0.0135 0.0687 0.0868 0.0840 0.1258

100 100 0.0138 0.0627 0.0881 0.0853 0.1277

120 100 0.0147 0.0649 0.0910 0.0881 0.1318
120 500 0.0134 0.0614 0.0864 0.0836 0.1251
120 1000 0.0128 0.0598 0.0842 0.0815 0.1220

150 100 0.0162 0.0687 0.0960 0.0929 0.1391
200 100 0.0195 0.0766 0.1062 0.1027 0.1541
250 100 0.0241 0.0866 0.1190 0.1150 0.1725

The QED corrections, including soft and hard photon emission, can be calculated in a way similar
to the one outlined in the previous section for the total cross-section. The observed asymmetry is

AFB,obs(s) = ∆FB,obs(s)/σobs(s)

where σobs(s) is given by Eq. (182) and

∆FB,obs(s) =
∫ kmax

0
dk ρFB,ini(k)(∆FB)0,eff(s(1− k)). (202)

In order to keep as close a relation to the C-even case of Eq. (182) as is possible we split off a
regular kinematical factor by writing [68]

ρFB,ini(k) =
1− k

(1− k/2)2
ρ̃ini. (203)

The “reduced” radiation spectrum ρ̃ini is then given by ρini of Eqs. (183) and (184) with the
replacements

δh1 → δh1 − α

π

1 + (1− k)2

k
ln

1− k

(1− k/2)2

h22 → h22 + [
(1− x)3

2x
+

(1− x)2√
x

(arctan
1√
x
− arctan

√
x)

−(1 + x) ln x+ 2(1− x)]/4

with x = 1− k. Of course the subleading terms h21 and h20 of Eq. (184) also change.

Because AFB(s) is a strongly increasing function in the resonance region, the effect from the initial
state bremsstrahlung is very large and negative, typically δAFB = −0.025, which is in modulus
as large as the asymmetry itself. Certainly, a full two-loop calculation (determination of h21 and
h20) for the initial state QED corrections is the most urgent missing piece necessary to make
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Figure 25: LEP measurement of AµFB.

well established predictions for the observed asymmetry. The other O(α) QED-effects are the
initial-final state interference and the final state corrections.

The interference term is given by

δ∆int
FB,obs(s) = δγγFB,int(k0) σ

γ
0f (s) +

1

2
(δγγFB,int(k0) + δγZFB,int(k0)) σ

γZ
0f (s)

+ δγZFB,int(k0) σ
Z
0f (s) +

∫ kmax

k0
dkρFB,int(k) σ0(s, s(1− k)) (204)

where [68]

δγγFB,int(k0) =
3αQeQf

4π

{

−(1 + 8 ln 2) ln k0 +
13

4
ln2 2− 7

2
ln 2− 1

4
+
π2

3

}

δγZFB,int(k0) =
3αQeQf

4π

{

−(1 + 8 ln 2) ln k0 +
127

32
ln2 2− 5

4
ln 2 +

1

8
+
π2

3

+4z(1 + z) ln 2 + z − 2z3
π2

3
+ (2z − 5/2) ln z

+
(

(5− 3z + 6z2) ln 2− 2 +
9

2
z − 3

2
z2
)

ln
z − 1

z

(1− 3z + 6z2 + 8z3)
[

Sp(1− 1

z
)− Sp(1− 1

2z
)
]

+ 4z3Sp(1− 1

z
)
}

(205)

are the virtual contributions from the γγ-boxes and the γZ-boxes, respectively, plus the soft photon
contribution (Eγ/Eb ≤ k0 ≪ kmax). The σ

i
0f ’s have been given after Eq. (46) and Sp(x) = Li2(x)

is the Spence function [54]. By z we denoted z =M2
R/s with M

2
R =M2

Z − iMZΓZ .

ρFB,int =
3αQeQf

4πk

{

−(1− k − k2/2) + (4− 5k + 5k2/2) ln(1− k) (206)

−(8− 12k + 9k2 − 5k3/2)
ln(2− k)

1− k

}

72



Figure 26: LEP measurement of AbFB.

describes the photon radiation spectrum [68]. The kernel σ0(s, s
′) follows from the C-even total

cross-section Eq. (168) by the substitution Eq. (192) such that σ0(s, s) = σ0(s).

For s ≃M2
Z and no cuts (kmax ≃ 1) the interference contribution is proportional to (α/π)(ΓZ/MZ)

and hence negligibly small (5 × 10−4). For MZ ≤ √
s ≤ MZ + 2 GeV and kmax ≤ 0.2, i. e., for

Eγ ≤ 10 GeV the contribution is smaller than 10−3 [67]. For tight cuts (kmax = k0 ≃ 0.01 or
smaller), but still near resonance, the leading correction in the angular distribution coming from
soft plus virtual photons is given by

1 +
4QeQfα

π
ln

1− cos θ

1 + cos θ
ln

∣

∣

∣

∣

∣

k0
z − 1 + k0

∣

∣

∣

∣

∣

+O(
α

π

ΓZ
MZ

) .

Integration yields

δ∆int
FB,obs(s) ≃ 3αQeQf

4π
{(1 + 8 ln 2) ln

∣

∣

∣

∣

∣

M2
R/s− 1 + k0

k0

∣

∣

∣

∣

∣

} · σ0(s). (207)

73



These corrections are positive and of the order of a few percent. Away from the resonance correc-
tions from the initial-final state interference are at the percent level.

Figure 27: QED corrections of AµFB.

The final state QED corrections are the simplests and least important ones. Since the photon is
emitted from the final state the convolution Eq. (201) we had in case of initial state radiation
turns into a simple product

δ∆fin
FB,obs(s) =

(

δfin(k0) +
∫ kmax

k0
dk ρfin(k)

)

(∆FB)0,eff(s) (208)

where the virtual plus soft photon contribution δfin(k0) is given again by Eq. (194) and

ρfin(k) =
αQ2

f

π

{

1 + (1− k)2

k
(Lf − 1) + 2

ln(1− k)

k
+ k

}

is the hard photon spectrum. If no cuts are applied (kmax ≃ 1) this correction is zero:

δ∆fin
FB,obs(s) = 0 . (209)

On the other hand σ0 gets corrected according to Eq. (196). Therefore, a small negative correction

δAff̄FB/A
ff̄
FB = −3α

4π
Q2
f ≃ − 0.00174 Q2

f (210)

is obtained. The soft photon effects (tight cuts) are the same for C-odd and C-even functions and
therefore do not affect the asymmetry, δ(AFB)

fin = 0 , independently of soft photon resummation.

The results given above for the final state photon radiation follow immediately from the classical
calculation of the QCD corrections [52] by the substitution 3

4
Q2
f → 1. With the latter replacement

all we said about the final state QED corrections applies to QCD corrections as well. The QCD
corrections have been discussed in more detail in Section 4.5.
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At present, asymmetry measurements are not yet very precise. The reasons for the difficulties

are obvious. The leptonic channels have a relatively low cross-section and the asymmetry Aµ
+µ−

FB

is numerically small. For the hadronic channels flavor tagging is necessary, which is difficult and
leads to a substantial efficiency loss.

In future, with increasing statistics, the asymmetry measurements will become more and more
important to disentangle possible new physics from standard model effects.

said on the final state QED corrections applies to QCD corrections as well. The QCD corrections
have been discussed in more detail in Section 4.5.

At present, asymmetry measurements are not yet very precise. The reasons for the difficulties

are obvious. The leptonic channels have a relatively low cross-section and the asymmetry Aµ
+µ−

FB

is numerically small. For the hadronic channels flavor tagging is necessary, which is difficult and
leads to a substantial efficiency loss.

In future, with increasing statistics, the asymmetry measurements will become more and more
important to disentangle possible new physics from standard model effects.

7. TESTING PHYSICS BEYOND THE STANDARD MODEL

Many authors have considered all kinds of extensions to the standard model. Here some of the
simplest possibilities of new physics effects are discussed. General introductions to this subject
can be found e.g. in [70-73] and in the “New Physics” sections of Ref. [74].

7.1 Additional Fermion Doublets

An almost standard extension of the SM is to allow for additional lepton and quark doublets.
It should be remembered here that the existence of new light neutrinos, leptons or quarks with
standard couplings is ruled out in particular by the LEP results [1]. Most limits are given by
the kinematical limit for pair production. Thus, typically, mf > 45 GeV for Dirac particles
f = νD, ℓ

′, b′ etc.. For Majorana neutrinos the limits are slightly lower, νM > 36 GeV, due to the
different threshold behaviour.

We thus focus our discussion on virtual fermion effects. At one-loop order, additional fermions
only contribute to the vector boson self-energies. Hence, the additional contributions are obvious
from the general form of the self-energy contributions to various parameter shifts as listed in Eq.
(146). It is convenient to represent them in terms of the quantities introduced in Eq. (147):

Observable correction defining Eq.
ρνµN(e) ∆ρ (85, 134)

∆ρ̂ = ∆ρ− s2
W

c2
W

∆1 +∆2 (100)

sin2Θf ∆κ =
c2
W

s2
W

∆ρ̂ =
c2
W

s2
W

∆ρ−∆1 +
c2
W

s2
W

∆2 (107)

ΓZff̄ ∆ρ̄ = ∆ρ+∆Z (108)
∆e = ∆α +∆1 +∆2 (100)

MW ∆r = ∆e−∆κ = ∆α− c2
W

s2
W

∆ρ+ 2∆1 −
(

c2
W

s2
W

− 1
)

∆2 (27, 104)

ΓZff̄ , A
ff̄
FB ∆r̄ = ∆e−∆ρ̂ = ∆α−∆ρ+

(

1 +
s2
W

c2
W

)

∆1 (120)

sin2ΘνµN(e) ∆̄ = ∆α−∆α2 (128, 129)

(211)
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For a fermion doublet the different terms are given by

∆α = 4s2WQf∆α2 =
α

3π
Q2
fNcf

{(

1 +
yf
2

)

G(yf)− yf − 5/3
}

(212)

∆1 =
α

16πs2W

Ncf

3

{[

2
(

1− yf
4

)

− 4|Qf |
(

1 +
yf
2

)]

G(yf)

+ (4|Qf |+ 1) yf − (4|Qf | − 2) ln
m2
f

M2
Z

}

∆ρ =

√
2GµNcf

16π2

{

m2
1 +m2

2 − 2
m2

1m
2
2

m2
1 −m2

2

ln
m2

1

m2
2

}

∆2 =

√
2GµM

2
W

16π2

Ncf

3

{

a+ 2b2 +
3a2 + 3b2 − 2b4

2b
ln
m2

1

m2
2

+ (2− a− b2)F (a, b)

−y1 − 2
(

1− y1
4

)

G(y1)− y2 − 2
(

1− y2
4

)

G(y2)
}

∆Z =

√
2GµM

2
ZNcf

12π2

{

v2f (1 + 3/2yf (1 + yfG(yf)))

+a2f (1− 3yf (1− (1− yf) G(yf)))
}

where yi =
4m2

i

M2
Z

, a =
m2

1
+m2

2

M2
W

, b =
m2

1
−m2

2

M2
W

and

G(y) =







√
1− y ln 1+

√
1−y

1−√
1−y ; 0 < y < 1

2
√
y − 1 arctan 1√

y−1
; y > 1

F (a, b) =







√
λ ln 1−a+

√
λ

1−a−
√
λ
; 0 < s < (m1 −m2)

2 or (m1 +m2)
2 < s

2
√
−λ arctan

√
−λ
a−1

; (m1 −m2)
2 < s < (m1 +m2)

2

with λ = 1− 2a+ b2, s =M2
W .

If one or both members are light (ℓ) or heavy (h), we get the following simple formulae

∆α =







α
3π
Q2
fNcf

(

ln
M2

Z

m2
f

− 5
3

)

; (ℓ)

0 ; (h)

∆1 =







0 ; (ℓ)
α

16πs2
W

Ncf

3

{

1− (2− 4|Qh|)
(

ln
M2

Z

m2
h

− 5
3

)}

; (h)

∆Z =

{
√
2GµM2

Z
Ncf

12π2 (v2f + a2f ) ; (ℓ)
0 ; (h)

∆ρ =























√
2GµNcf

16π2

{

m2
1 +m2

2 − 2
m2

1
m2

2

m2
1
−m2

2

ln
m2

1

m2
2

}

; 0 if m1 = m2 ; (ℓℓ)
√
2GµNcf

16π2

{

m2
h +m2

ℓ + 2m2
ℓ ln

m2
ℓ

m2
h

+ · · ·
}

; (hℓ)
√
2GµNcf

16π2

{

2 (m2
1
−m2

2
)2

3 (m2
1
+m22)

+ · · ·
}

; (hh)
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∆2 =

√
2GµM

2
W

16π2

Ncf

3















4 ln c2W ; (ℓℓ)

2 ln
m2

h

M2
Z

+ 1 ; (hℓ)

0 ; (hh) .

In these approximations terms of order O(α
m2

ℓ

M2
W

) and O(α
M2

W

m2
h

) (up to log’s) have been neglected.

It is interesting to notice that due to chiral symmetry breaking by masses there is a non-decoupling
effect also for a mass degenerate doublet

∆r(hh) =
α

4πs2W

Ncf

3
(213)

∆r̄(hh) =
α

8πs2W

Ncf

3

(

1 +
s2W
c2W

)

.

This is very interesting because heavy degenerate doublets give a kind of model independent
contributions, since ∆α, ∆α2, ∆ρ, ∆2 , ∆Z = 0 while only ∆1 = α

24πs2
W

Nd 6= 0 counting directly

the number Nd of degenerate doublets.

Given the present accuracy we easily estimate the number Nd of mass degenerate doublets needed
to give a one standard deviation effect (we assume sin2ΘW = 0.23):

Measurement δ∆r per doublet accuracy Nd

MW ∆r(hh)= 8.42 × 10−4 δ∆rexp= 0.0180 (0.0040) > 21(4)

sin2 Θ̄ (ALR, A
µ+µ−

FB ) ∆r̄(hh)= 5.46 × 10−4 δ∆r̄exp= 0.0078 (0.0043) > 14(7)

in parentheses are given the values which can be reached at LEP in future.

Notice that the “weak isospin conserving” contribution ∆2 gives a positive contribution to ∆r. A
fourth family can contribute at most

∆r(4) ≃ 3.4× 10−3 (Dirac ν4) . (214)

Such a contribution would weaken the upper bound for the top mass Eq. (105) by at most 8 GeV.
In contrast all “weak isospin violating” effects give negative contributions to ∆r.

If, besides the (t,b)-doublet, additional split doublets exist, the sum of the quadratic heavy particle
effects is constraint by the “mt-bounds”, which then are bounds on mt eff defined by

∆ρ =
Nc

√
2Gµm

2
t eff

16π2
=
Nc

√
2Gµm

2
t

16π2
+
∑

d

Nc

√
2Gµ

16π2

(

m2
1 +m2

2 −
2m2

1m
2
2

m2
1 −m2

2

ln
m2

1

m2
2

)

(215)

if we assume that there are no other contributions to ∆ρ (see below). Such split heavy doublets
(m1, m2 ≫MZ) also modify ∆1 to

∆1 =
α

24πs2W

(

1− 4Q̄ ln
m1

m2

)

, Q̄ =
1

2
(Q1 +Q2) . (216)

Recently, by treating ∆ρ, ∆1 and ∆2 as free parameters, a number of bounds have been derived
for these quantities. The results have been obtained by assuming that new physics shows up in the
vector-boson self-energies only. Before we discuss the results we give a translation for the notation
used by various authors.
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Comparison of notations
∆ρ ∆1 ∆2 Burgers-Jegerlehner [24]

4
√
2Gµ∆ρ(0) −4

√
2Gµc

2
W∆3(M

2
Z) −4

√
2Gµ (∆±(M

2
W )− c2W∆3(M

2
Z)) Kennedy-Lynn [44]

αT αS
4s2

W

≃ 0 Peskin-Takeuchi [75]

αT αSZ

4s2
W

α (SW−SZ)
4s2

W

Marciano-Rosner [76]

αhV
√
2GµM2

W

4π
hAZ

√
2GµM2

W

4π
(hAW − hAZ) Langacker-Kennedy [77]

ǫ1 ǫ3 −ǫ2 Altarelli-Barbieri [78]

Notice that for additional heavy fermions one has ∆ρ (T ) > 0, ∆1 (S) > 0 and ∆2 ≃ 0 (SW ≃ SZ)
and one may perform two-parameter fits in terms of T (≃ hV ) and S (= SZ ≃ hAZ), for example.
Since the ∆ρ (T ) bounds are equivalent to the familiar mt-bounds, here, we focus on ∆1 (S)
(equivalent to ∆r(hh) considered above). Bounds on S not only restrict the number of additional
heavy mass degenerate fermion families but any extension of the SM which exhibits a large number
of additional fermions. An example of this kind are the technicolor (TC) models (for which
mH = O(1 TeV)) [75]. Using “scaled up QCD” arguments, TC models with NTC technicolors and
NTD doublets of technifermions are estimated to yield [75]

Stechnicolor ≃ (0.05− 0.1)NTCNTD + 0.12 . (217)

For example, one finds S ≃ 2 for NTC = 4 and one technifermion family. As we shall see such a
contribution is almost excluded by the present experimental data. Constraints on S are obtained
from

• LEP data on ΓZ , Γℓ and A
µ+µ−

FB

• pp̄ collider data on sin2ΘW (or MW )

• νN scattering data

• data from measurements of parity violation in atoms.

An important observation has been made by Marciano and Rosner [76], namely, that the weak
charge which determines parity violation in Cesium is almost independent of T (∆ρ) and hence of
the top mass. They obtain

Qthe
w

(

133
55 Cs

)

= −73.20± 0.13− 0.8S − 0.006T (218)

for the theoretical prediction. This result is normalized to S=T=0 when mt = 140 GeV and mH

= 100 GeV and no physics beyond the SM is present. The small coefficient of T is due to an
accidental cancellation of terms for the stable Cs isotope. Using a new atomic calculation [79] the
experimental result obtained by the Boulder group [80] is

Qexp
w

(

133
55 Cs

)

= −71.04± 1.58(exp)± 0.88(the) (219)
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where the first error is mostly statistical and the second is the theoretical uncertainty of the atomic
theory. Assuming S=T=0 we have

δQw = Qexp
w −Qthe

w = 2.16± 1.81 or − 1.38 ≤ δQw ≤ 5.70 at 95% CL . (220)

Setting Qexp
w = Qthe

w S is determined to be

S = −2.7± 2.0± 1.1± 0.16 .

From a global fit to all data Kennedy and Langacker [77] obtain (consistent with “no new physics”)

S = −1.1± 1.7 or S < 0.7(1.2) at 90% (95%) CL . (221)

Thus no more than four extra families of heavy degenerate fermions can exist in this scenario.

We close this subsection with a remark on Majorana neutrinos. In models with isosinglet right

handed neutrinos νRj [81] the neutrinos are expected to be massive and to mix like the quarks. Since
the right handed neutrinos have trivial quantum numbers they can be either Dirac or Majorana
particles. In general, additional heavy singlet neutrinos are expected to lower the invisible widths
of the Z. This follows from unitary mixing and the assumption that the νR is too heavy to be
produced. The effective number of ν’s then would be N eff

ν ≤ 3. A “natural” scenario for a
heavy additional neutrino which does not contribute to ΓZ has been proposed by Hill and Paschos
[82]. The fourth family νR is assumed to have a Majorana mass M = O(v) besides a Dirac
mass mD = O(mℓ′), where v is the vacuum expectation value of the Higgs field and mℓ′ the
fourth family lepton mass. Mixing of the fourth family with the first three is assumed to be
negligible. Diagonalizing the neutrino mass matrix one has two Majorana neutrinos of mass m1

and m2 = m2
D/m1. Bertolini and Sirlin [83] found that in this case masses can be chosen such

that the leptonic contribution to ∆r(∆ρ) are similar to the “isospin violating” large doublet mass
splitting effects but with the opposite sign! For arbitrary mD a maximum value

∆rleptonsmax ≃ α

4πs4W

(

mD

MZ

)2 1

9.49
(222)

is obtained for mℓ′ = m1 = mD/3.08. Assuming mD ≤ 300 GeV, a fourth family could contribute
at most

∆r(4)max ≃ 1.7× 10−2 (Majorana ν4) (223)

and a compensating increase of (mt)max of at most 36 GeV would follow.

7.2 Additional Higgs multiplets

7.2.1 General considerations

We first discuss the possibility of having ρ0 = ρtree 6= 1. Doing so, we have to remember the
phenomenological bound

ρ0 = 0.992± 0.011 Ref. [26] . (224)

If several Higgs multiplets couple to the gauge bosons the mass formulae Eq. (26) are modified to

M2
W =

g2

2

∑

i

v2i
(

Ii(Ii + 1)− I23i
)

M2
Z =

g2

2 cos2Θg

∑

i

v2i 2I
2
3i
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such that

ρ0 =

∑

i v
2
i (Ii(Ii + 1)− I23i)
∑

i v
2
i 2I

2
3i

.

Here vi =< Hi >0 is the vacuum expectation value (VEV) of the charge zero component of the
multiplet i with weak isospin Ii with 3rd component I3i. For a mixture of doublets (Ii = 1/2,
|I3i| = 1/2) and Y=2 triplets ∆ = (∆++,∆+,∆0) (Ii = 1, |I3i| = 1) ρ0 is bounded by

1 ≥ ρ0 =
v2
d
+v2t

v2
d
+2v2t

≥ 1
2

doublets mixed triplets
only only

with v2d =
∑

i v
2
i,doublets, v

2
t =

∑

i v
2
i,triplets. Notice that Y=2 triplet contaminations change the value

of ρ0 below 1. On the other hand Y=0 triplets ∆ = (∆+,∆0,∆−), yield a positive contribution

∆ρ0 = 4
v2t
v2d

> 0 (225)

to the ρ-parameter. At 68% CL, the bound Eq. (224) restricts the triplet VEV’s by

vt < 34 (7) GeV for Y = 2 (0) .

It is important to notice that since both vd and vt are free parameters, we need two measurable
quantities as input parameters now. One still has the definition

v2 =
∑

i

v2i
(

Ii(Ii + 1)− I23i
)

=
(√

2Gµ

)−1

which fixes a certain combination of the VEV’s, however unlike to the case when ρ0 = ρtree = 1,
now, ρ0 must be considered as an additional free parameter. The consequences for the renor-
malization procedure have been pointed out by Lynn and Nardi [84] and will be discussed in an
Appendix to this Section.

Here we mention that if ρ0 = ρtree 6= 1 one should consequently replace

sin2ΘW → sin2Θg = (e/g)2 = 1− M2
W

ρ0M2
Z

(226)

∆r → ∆rg = 1− πα√
2GµM2

W

1

sin2Θg

in all formulae. If we define ∆ρ0 in analogy to Eq. (97) by

ρ0 =
1

1−∆ρ0

we have

sin2Θg = sin2ΘW (1 +
cos2ΘW

sin2ΘW

∆ρ0)

and hence the exact relation

1

1−∆r
=

1

1−∆rg
(1 +

cos2ΘW

sin2ΘW

∆ρ0) (227)
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holds. The experimental bounds mentioned before suggest that deviations from ρ0 = 1 can be
treated as perturbations. In the standard approach such “tree level” perturbations may be included
by using

(∆ρ)irr → (∆ρ)irr + (1− ρ−1
0 ) (228)

or, in linear approximation, simply by adding

δ∆r = −cos2ΘW

sin2ΘW

∆ρ0, ∆ρ0 ≃ −v
2
t

v2d
; (v2t ≪ v2d) . (229)

Notice that a 0.6% Y=2 triplet contamination (vt ≃ 19 GeV) yields a +2% effect in ∆r, a contri-
bution which could cancel heavy particle effects! The sensitivity to Y=0 triplets is by a factor of
four larger and of opposite sign.

Besides the tree level effects additional Higgs fields would contribute to ∆r through loops

∆r = ∆rSM +∆rextraHiggses.

For triplets these terms have not been worked out in full detail [84,85]. We expect them to be
small (large) for triplets with small (large) mass-splitting.

7.2.2 Two Higgs doublet model

From a theoretical point of view the case with two Higgs doublets is very attractive. Two Higgs
doublets are obtained in minimal supersymmetric (SUSY) extensions of the SM. Such models also
have been considered as a possible “explanation” for the appearance of very different mass scales
which could be set by the very different VEV’s. For example, if the vector-bosons and fermions
acquire their masses from vastly different VEV’s this could be the reason why mf ≪ MW . Since
now we know that the top is heavier than the intermediate vector bosons this is not a plausible
argument any longer. On the other hand one easily may get mt ≫ mb without having vastly
different Yukawa couplings because upper and lower entries of the fermion doublets must get their
masses from different VEV’s (mt ∼ v2, mb ∼ v1) in order to prevent FCNC’s. Notice, however,
that the experimental bounds on ∆r Eq. (105) seems to require a top with a large Yukawa
coupling, not just a large top mass. Anyway, the possibility of two Higgs doublets is not ruled out
phenomenologically and therefore must be studied.

The model is identical to the SM except that two independent doublets

Φi =

(

φ+
i

(vi + ηi + iχi)/
√
2

)

of hypercharge 1 are present. Both doublets in general couple to the fermions. If only one doublet
couples to the fermions the diagonalization of the fermion mass matrix simultaneously diagonalizes
the Yukawa couplings (see Eqs. (6) and (7)) and no FCNC’s mediated by scalars is possible.
Obviously, if more than one Higgs field couples to the fermions this is no longer the case. In
order to ensure the absence of FCNC’s mediated by scalars, fermions of a given charge must be
required to couple to one Higgs field only [86]. We assume Φ1 to couple to the T3f = −1

2
and Φ2

to the T3f = +1
2
fermions. This can be achieved by imposing a discrete symmetry Φ2 → −Φ2

and uRj → −uRj for the up-type quark fields. The scalar potential must share the symmetry
Φ2 → −Φ2. The most general renormalizable Higgs potential is then given by

V = −µ2
1(Φ

+
1 Φ1)− µ2

2(Φ
+
2 Φ2) + λ1(Φ

+
1 Φ1)

2 + λ2(Φ
+
2 Φ2)

2

+ λ3(Φ
+
1 Φ1)(Φ

+
2 Φ2) + λ4(Φ

+
1 Φ2)(Φ

+
2 Φ1) +

λ5
2

[

(Φ+
1 Φ2)

2 + (Φ+
2 Φ1)

2
]
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The physical states result from mixing of the fields of the two doublets with vacuum expectation
values v1 and v2. By a rotation with rotation angle β determined by

tan β =
v2
v1

≡ vtop
vbottom

, 0 ≤ β ≤ π

2
, (230)

we obtain doublets Φ′
i, where Φ

′
1 may be identified with the SM Higgs field with vacuum expectation

value v =
√

v21 + v22. The fields φ
′±
1 and χ′

1 can be gauged away and hence represent the Higgs
ghosts ϕ± and ϕ.

The new physical scalars are the charged Higgses H± and a pseudoscalar A:

H± = − sin β φ±
1 + cos β φ±

2

A = − sin β χ1 + cos β χ2

while the two physical scalars H and h are given by mixing of η′1 and η′2 with mixing angle α − β
such that

H = cosα η1 + sinα η2

h = − sinα η1 + cosα η2 .

Noticing that the fields

η′1 = cos(α− β) H − sin(α− β) h

η′2 = sin(α− β) H + cos(α− β) h

couple to the gauge bosons identical as the Higgs in the SM, i.e. ZϕH → Zϕη′1, ZAη
′
2 and

W+ϕ−H → W+ϕ−η′1, W
+H−η′2, we easily find the couplings for H and h, which simply pick

factors cos(α − β) and ± sin(α − β). Similarly, V V H → V V H cos (α − β) − V V h sin (α − β)
(V = W,Z).

Whereas β only depends on the ratio of the vacuum expectation values α depends on all the
parameters of the Higgs potential, tan 2α = v1v2(λ3+λ4+λ5)

λ2v22−λ1v21
(−π

2
≤ α ≤ 0).

In a two Higgs model the Yukawa couplings may be enhanced by large factors v2/v1 or v1/v2. This
is important for the heavier fermions. The relevant couplings read

Hff̄, f = b, t −g
2

(

mb

MW

cosα
cos β

, mt

MW

sinα
sinβ

)

hff̄ , f = b, t −g
2

(

− mb

MW

sinα
cos β

, mt

MW

cosα
sinβ

)

Aff̄, f = b, t −γ5 g2
(

mb

MW
tanβ, mt

MW
cotβ

)

H+bt̄ g√
2

(

mb

MW
tan β 1+γ5

2
+ mt

MW
cotβ 1−γ5

2

)

Vtb .

(231)

The couplings for the other fermions are given by analogous expressions. For example, the coupling
for the τ may be obtained by substituting mt → 0, mb → mτ .

In the minimal SUSY model the masses of the extra Higgses at tree level are severely constrained
by the following mass- and coupling-relationships:

m2
± = M2

W +m2
A

m2
H,h =

1

2

(

M2
Z +m2

A ±
√

(M2
Z −m2

A)
2 + 4M2

Zm
2
A sin2 2β

)

tan(2α) = tan(2β)
m2
A +M2

Z

m2
A −M2

Z
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sin2(α− β) =
m2
H

m2
A

M2
Z −m2

H

M2
Z +m2

A − 2m2
H

cos2(α− β) =
m2
h

m2
A

M2
Z −m2

h

M2
Z +m2

A − 2m2
h

. (232)

Only two independent parameters are left, which we may choose to be tan β and mA. In Fig. 28
we plot the dependent parameters as a function of mA for various tan β.

Figure 28: a) the scalar masses mh, mH and b) sin2 (α−β) as a function of the pseudoscalar mass
mA for various values of tan β.

In this model one scalar is always lighter than Min(MZ , mA), the other is always heavier than
Max(MZ , mA). The charged Higgs must be heavier than MW . Notice that the solutions for mh,
mH and sin2 (α−β) are symmetric under the replacement tanβ ↔ cotβ. The angles α and β and
the Yukawa couplings Eq. (231) do not share this symmetry. Large mass-splittings between the
I3 = +1/2 and I3 = −1/2 states are forbidden such that no large contributions to the radiative
corrections are obtained in this case (see below).

7.2.3 Present bounds on scalar masses

Experimental bounds on scalars masses [1] depend on the parameters of the two doublet model. The
bound on the lightest scalar (corresponding to the SM Higgs) gets weaker due to the suppression
of the production rate by

Γ(Z → hff̄)

ΓSM(Z → Hff̄)
= sin2 (α− β) .

Thus one may loose the bound Eq. (11) for the lightest Higgs denoted by h here. In the minimal
SUSY model the constraints Eq. (232) imply sin2 (α − β) ≥ 0.5 for mA ≥ MZ and the bound
essentially remains valid. The reason is that most of the mass bounds are primarily a matter of
kinematical accessibility, rather than a problem of rate. Notice that a corresponding bounds on
the pseudoscalar mass mA cannot be obtained via Z → Aff̄ since this decay is not allowed by the
absence of a ZZA coupling at tree level.

Fortunately there is a complementary Z decay mode Z → Ah available if mA +mh < MZ . This
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decay has a branching fraction

Γ(Z → hA)

ΓSM(Z → νν̄)
=

1

2
cos2 (α− β)λ3/2

where λ = λ(1, m2
h/M

2
Z , m

2
A/M

2
Z) is the two body phase space function λ(x, y, z) = x2 + y2 + z2 −

2xy−2xz−2yz). Notice that the couplings for the decays of the scalars into fermion pairs depend
on the mixing angles α and β, according to Eq. (231). Bounds therefore are not symmetric under
tanβ ↔ cot β.

Present bounds usually are given for the minimal SUSY scenario, assuming that the mass-coupling
relations Eq. (232) hold. If mA > MZ the SM bound Eq. (11) applies for the light scalar. For
mA < MZ we have mh < mA and cos2 (α− β) > 0.5. Notice that mA ≃ mh requires tan β ≫ 1 or
tanβ ≪ 1 which implies cos2 (α − β) ≃ 1. The resulting mass bounds obtained from a study of
the decay Z → hA are the following:

mh > 28 GeV, mA > 30 GeV for tanβ < 1
mh > 34 GeV, mA > 43 GeV for tanβ > 1

mh ≃ mA > 40 GeV for tanβ < 1
mh ≃ mA > 42 GeV for tanβ > 1 .

(233)

We finally consider the charged Higgs. At LEP a charged Higgs cannot be singly produced by
t → H+b, because, given the bound mt > 89 GeV, a top quark connot be produced. Pair
production by Z → H+H− is possible, however. The partial with for this Z decay channel is

Γ(Z → H+H−) =

√
2GµM

3
Z

48π
(1− 2s2W )2

(

1− 4m2
±

M2
Z

)3/2

.

Since the Z rates are no limiting factor the charged Higgs search is possible right to the kinematical
limit ∼ 45 GeV. The partial decay widths are

Γ(H+ → ℓ+νℓ) =

√
2GµmH

8π
tan2 βm2

ℓ

Γ(H+ → uid̄j) =
3
√
2GµmH

8π
(|Vij| (cot2 βm2

i + tan2 βm2
j )

for leptonic and hadronic decays, respectively. The experimental limit slightly depends on the

branching fraction Br(H → τντ ) ≃ Γ(H→τντ )
Γ(H→cs̄)

≃ m2
τ

3m2
c
tan4 β:

m± >

{

40 GeV Br(H → τν) = 0
45 GeV Br(H → τν) = 1 .

(234)

These limits will slightly improve towards MZ/2 during the LEP1 run time. For substantial
improvements we have to wait for LEP2.

7.2.4 Virtual effects

The case of an additional Higgs doublet has been analysed in detail in Refs. [87,88]. The leading
heavy particle contributions as usual show up in the ρ-parameter Eq. (85). A Higgs-gauge boson
loops yields

∆ρH =
3
√
2GµM

2
W |d|2

16π2
fH(

m2
H

M2
Z

, c2W )
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with

fH(x, y) = x

(

ln(y/x)

y − x
+

lnx

y (1− x)

)

when the coupling is d times the SM HVV coupling.

For a scalar loop (masses m1 and m2) with coupling iaVµϕ
∗
1

↔
∂µ ϕ2 the contribution is

ΠS
V (0) =

a2

16π2
fS(m

2
1, m

2
2) (235)

with

fS(m
2
1, m

2
2) =

1

2
(m2

1 +m2
2)−

m2
1m

2
2

m2
1 −m2

2

ln
m2

1

m2
2

.

The total Higgs contribution is then given by

∆ρHiggs =

√
2Gµ

16π2

{

3M2
W

[

sin2(α− β) fH(
m2
h

M2
Z

, c2W ) + cos2(α− β) fH(
m2
H

M2
Z

, c2W )

]

+cos2(α− β)
(

fS(m
2
±, m

2
h) + fS(m

2
±, m

2
A)− fS(m

2
A, m

2
h)
)

+ sin2(α− β)
(

fS(m
2
±, m

2
H) + fS(m

2
±, m

2
A)− fS(m

2
A, m

2
H)
)}

(236)

Without loss of generality we may assume that mh ≤ mH . Thus h corresponds to the minimal
SM Higgs. Different observables are affected as follows from Eqs. (211). Typically, for large weak
isospin splitting (excluded in SUSY models) the change in ρ is given by [88]

∆ρHiggs ≃











√
2Gµ

16π2 m
2
± for m± ≫ mneutrals

√
2Gµ

16π2 m
2
neutrals for mneutrals ≫ m± .

(237)

Assuming m±= 200 GeV (≫ mneutrals), for example, we would obtain a shift δ∆r ≃ −1.4 × 10−2

which would tighten the upper bound for mt Eq. (105) by 36 GeV.

In Ref. [89] it has been found that there exist windows mH,h < m± < mA and mA < m± < mH,h

(which are excluded in SUSY scenarios) in which the scalars give a large negative contribution to
∆ρ. The maximum value is attained at the minimum c ≃ 0.562 of the function f(c2) = c2+ c2

1−c2 ln c
2

where fmin ≃ −0.216. The result

∆ρHiggsmin =

√
2Gµ

16π2

fmin
c2

m2
± ≃ −7.14× 10−8 GeV−2 m2

± (238)

is obtained for the cases

• mh = mH = 0, sin2(α− β) arbitrary and m± = c mA

• mh = mH , mA = 0, sin2(α− β) arbitrary and m± = c mH

• mh = 0, mH arbitrary, sin2(α− β) = 0 and m± = c mA

• mA = 0, mh arbitrary, sin2(α− β) = 1 and m± = c mH .
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As an example, choosing m± = 200 GeV and mA = 356 GeV (≫ mH,h) yields δ∆r ≃ 9.6× 10−3

which would weaken the upper top mass bound by 21 GeV.

Large effects are expected from extra vertex corrections to the Zbb̄ vertex, and the Zτ−τ+ vertex
also should be inspected. From Eq. (231) we learn that if tan β = O(1) only the couplings
proportional to mt are important. If tan β ≫ 1 the mb (mτ ) Yukawa couplings are enhanced and
may give rise to large non-standard effects. We distinguish the two cases:

i) tan β ∼ 1 (disfavored by minimal SUSY)

Only the H+bt̄ vertex is of importance here. It yields a negative contribution

∆ρ(H
+) ≃ −4

3
cot2 β

α

π

(

mt

MZ

)2

(239)

and affects the Z-width, ∆Γ(Z → bb̄) < 0, according to

√
2GµM

2
Z

(

1 + ∆ρ(H
+)
)

T3bγµ (1− γ5) . (240)

ii) tan β ≫ 1

Here besides the H+ also heavy neutrals can give large effects of either sign. Lepton universality
may be violated in Γτ/Γµ by effects proportional to m2

τ . These are below 1% and may be positive
(m± large) or negative (mA large).

7.3 Extra Z Bosons

The existence of additional neutral gauge-bosons is predicted by most extensions of the standard
model gauge group. For a general investigation of effects from extra neutral gauge-bosons we refer
to [70-74,90]. Here we only consider the simplest case of one extra Z-boson Z ′0 which mixes with
the standard model Z denoted by Z0. It is supposed that the particles of the Standard Model
with 3 families have the normal SU(2)L ⊗ U(1)Y transformation properties such that

Lem = ejemµ Aµ

LNC =
g

cosΘg
(J3Lµ − sin2Θgj

em
µ )Z0µ + g̃J̃µZ

′0µ (241)

with

Aµ = sin2 ΘgW3Lµ + cos2ΘgBµ ; Z0µ = cos2ΘgW3Lµ − sin2ΘgBµ

and (Π± = 1±γ5
2

)

jemµ = J3Lµ + JY
J̃µ = f̄γµ(Π−ỸL +Π+ỸR)f

(242)

depending on the specific extension. SU(2)L symmetry requires ỸνeL = ỸeL, ỸuL = ỸdL and we
shall assume generation universality ỸµL = ỸeL, ỸsL = ỸdL etc. Below, we shall restrict to the
case of an extra Ũ(1)Y ′ of most general E6 origin where the symmetry is broken according to
E6 → G⊗ U1β , G ⊃ SU(3)c ⊗ SU(2)L ⊗ U(1)Y with Z ′0 = cos βZχ + sin βZψ. Then

ỸL,R = cos βQχ
L,R + sin βQψ

L,R (243)
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with

Qχ
L =

√

3
8

for (νe, e
−, d̄)L

Qχ
L = −1

3

√

3
8

for (e+, u, ū, d)L

Qψ
L = 1

3

√

5
8

for (νe, e
−, e+, u, ū, d, d̄)L

and Q(fR) = −Q(f̄L).11

Due to mixing the mass matrix is of the form

Lmass =M2
WW

+W− +
1

2

(

Z0, Z
′0
)

(

M2
Z0 ∆2

∆2 M2
Z′0

)(

Z0

Z
′0

)

(244)

and can be diagonalized by
(

Z
Z ′

)

=

(

cos θ sin θ
− sin θ cos θ

) (

Z0

Z ′0

)

. (245)

As a consequence the following effects are obtained

• a reduction of the Z mass by mixing (see below)

M2
Z cos

2 θ +M2
Z′ sin2 θ = M2

Z0

M2
Z sin

2 θ +M2
Z′ cos2 θ = M2

Z′0

(M2
Z′ −M2

Z) sin θ cos θ = −∆2 (246)

• a modification of the Z-couplings by mixing:

JZµ = cos θJZ0µ + sin θ
g̃ cosΘg

g
JZ′0µ

JZ′µ = cos θJZ′0µ − sin θ
g

g̃ cosΘg
JZ0µ (247)

• Z ′-exchange effects, for example, through the mixing amplitude

igg̃

cosΘg

sin θJµZJZ′µ

(

1

s−M2
Z

− 1

s−M2
Z′

)

.

In general the parameters e, MW , MZ , sin Θg = e/g, MZ′ g̃ and sin θ are free. More interesting is
the constrained Higgs case where all Higgses are in doublets and singlets. Generically we consider a
model with two doublets (φ0

1, φ
−
1 ) and (φ+

2 , φ
0
2) and two singlets φ0

3 and φ
0
4 with vacuum expectation

values < φi >= vi/
√
2. The mixing angle is then fixed by

∆2 = 2M2
Z0 sin2Θg

(

Ỹ1v
2
1 − Ỹ2v

2
2

)

/v2 = ±
√

(M2
Z′ −M2

Z0)(M2
Z0 −M2

Z)

M2
Z′0 = 4M2

Z0 sin2Θg

∑

i

(

Ỹivi
)2
/v2 (248)

11Special cases are the symmetry breaking patterns

Zχ : E6 → SO(10) → SU(5)⊗ U(1)χ for β = 0
Zψ : E6 → SO(10)⊗ U(1)ψ for β = π/2

−Zη : E6 → SU(3)c ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)η for β = π − arctan
√

5
3
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where v2 = v21 + v22 and MW = gv/2 and we have

tan2 θ =
M2

Z0 −M2
Z

M2
Z′ −M2

Z0

; sin θ = ∓
√

(M2
Z0 −M2

Z)/(M
2
Z′ −M2

Z) (249)

and

M2
Z0 =

M2
W

cos2Θg
. (250)

due to standard model mixing with sinΘg = e/g. This implies

MZ < MZ0 < MZ′

and hence

ρ0 =
M2

W

M2
Z cos2Θg

=
M2

Z0

M2
Z

= 1 + sin2 θ

(

M2
Z′

M2
Z

− 1

)

≥ 1 . (251)

This tree level modification mimics heavy particle effects.12 Since the Higgs doublets have some
given hypercharge, in our generic example,

Ỹ1 = −2

3



cos β

√

3

8
+ sin β

√

5

8



 ; Ỹ2 =
2

3



cos β

√

3

8
− sin β

√

5

8





The quantity

x = Ỹ1ξ − Ỹ2 (1− ξ) = ± 1

2 sin2Θg

∆ρ0
ρ0

; 0 ≤ ξ =
v21

v21 + v22
≤ 1

is fixed for a given model. This is called the Higgs constraint and determines MZ′ in terms of sin θ
for given ξ and sin2Θg. Notice the bound min (Ỹ1,−Ỹ2) ≤ x ≤ max (Ỹ1,−Ỹ2). Since v2 is the
VEV that gives rise to the top mass, it is assumed that 0 ≤ ξ ≤ 0.5 in the Higgs constraint.

In cases of interest, mentioned above, there is a second constraint coming from the unification
condition if the group factors merge into a simple Lie group at some higher energy scale. Then g̃
is related to g by

g̃ = g tanΘg

√
λ; λ = O(1). (252)

The constraint holds with λ = 1 if G breaks directly to GSM⊗Ũ(1). The effects from an extra Ũ(1)
boson in ∆r has been investigated in Ref. [91]. Since ρ0 6= 1 at tree level a natural renormalization
scheme is the one using sin2Θg Eq. (74) which allows for a smooth limit

lim
θ→0

cosΘg =
M2

W

M2
Z

12The analysis applies also to the left-right symmetric model (LR), which is characterized by the gauge group
SU(2)R ⊗ SU(2)L ⊗ U(1)B−L. In this case

JZ′0 = JLR = c J3R − 1

2c
JB−L; c =

(

(

gR
gL

)2 c2g
s2g

− 1

)1/2

and g̃ = g tanΘg. Mixing between the charged gauge bosons W±

L and W±

R (mixing angle θ±) may change the

physical W mass, the Fermi constant
√
2Gµ = g2

4M2

W

cos2 θ± and ρ0, which becomes ρ0/ρ
± where ρ0 is given by Eq.

(251) and ρ± = 1 + sin2 θ± (M2
W ′/M2

W − 1). We assume the right-handed neutrino to be heavy and mixing in the
charged sector to be negligible such that the charged sector for our purpose looks the same as in the SM. In the

minimal LR model with gR = gL we further have sin θ ∼
√

c2g − s2g (MZ/MZ′)2.
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and such that Eq. (27) holds true with the replacement

∆r → ∆r̃g = ∆rg + (B)Z′ (253)

where (B)Z′ is the contribution from theW−Z ′ box diagrams contributing to µ-decay. 13 Explicitly

(B)Z′ = −3g̃2

8π2
(Ỹ )2ℓ

ln x

x− 1
(254)

= − 9αλ

16π cos2ΘW



cos β + sin β

√

5

27





2
ln x

x− 1

where x =
M2

Z′

M2
W

. With the general constraint (cos β + sin β
√

5/27)2 ≤1.185 one obtains |(B)Z′| ≤
1.6 × 10−3, 1.0 × 10−3, 0.7 × 10−3 for λ = 1 and MZ′ = 100, 150, 200 GeV. For the Zη boson

from E6 → SSM ⊗ U(1)η one has cos β =
√

3/8, sin β = −
√

5/8 and hence for the same values of

λ and MZ′ :|(B)Z′| ≤ −1.0 × 10−4, −0.6× 10−4, −0.4× 10−4.

In view of the expected experimental precision of LEP experiments, δ∆r ≃ 0.004, these contribu-
tions to ∆r are likely to be negligible. As a result

sin2Θg =
A2

0

M2
W

1

1−∆r̃g
; ∆r̃g ≃ ∆rSM (255)

such that sin2Θg ≃ sin2ΘSM
W when calculated in terms of α, Gµ and MW .

However, since ρ0 > 1, the prediction of the W -mass is affected as follows from Eqs. (101) and
(227). In linear approximation we get

δ∆r = −cos2ΘW

sin2ΘW

∆ρ0, ∆ρ0 = sin2 θ

(

M2
Z′

M2
Z

− 1

)

. (256)

When calculated in terms of α, Gµ and MZ the weak mixing parameter changes according to

sin2Θ′
g =

1

2







1−
√

√

√

√1− 4A2
0

ρ0M2
Z

1

1−∆r̃g







≃ sin2Θg −
s2gc

2
g

c2g − s2g

∆ρ0
ρ0

(257)

where we used the notation sin2Θg = s2g, c
2
g = 1−s2g. The W mass is given byM2

W = ρ0M
2
Z cos2Θ′

g.

Also the tree level modifications of the Z-couplings through mixing can be tested at LEP. Mixing
affects the Z-width and the interference term as indicated in Eqs. (175) and (176). The widths
now read

Γf =
√
2GµM3

Z
ρ0ρfNcf

12π

{

cos2 θ(v2f + a2f) + 2 cos θ sin θ′(vfv
′
f + afa

′
f ) + sin2 θ′(v

′2
f + a

′2
f )
}

(1 + δQED) (1 + δQCD)
(258)

where sin θ′ = sin θ sinΘg

√
λ. Here we have used Eqs. (247) and (252). The new couplings are

parametrized by

a′ν = cos β
√

3
8
+ sin β 1

3

√

5
8

v′ν = a′ν

a′e = cos β 2
3

√

3
8
+ sin β 2

3

√

5
8

v′e = cos β 4
3

√

3
8

a′u = cos β 2
3

√

3
8
+ sin β 2

3

√

5
8

v′u = 0

a′d = a′e v′d = −v′e

(259)

13Contributions like the extra vertex corrections which vanish for θ → 0 have been neglected. Also neglected are
the contributions to the vector-boson self-energies of the extra particles present in such models
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Treating the Z ′ effects as perturbations we obtain

∆Γ′
f = Γ′

f − Γf = ∆Γρf +∆Γθf (260)

with

∆Γρf = ∆ρ0 Γ
SM
f

(

1 +
4Qfvf
v2f + a2f

s2gc
2
g

c2g − s2g

)

∆Γθf = sin θ sin2Θg

√
λ ΓSMf

2 (vfv
′
f + afa

′
f )

v2f + a2f
(261)

The second term contributing to ∆Γρf is dΓSM

ds2g
∆s2g coming from the change in sin2Θg as given by

Eq. (257).

Given the “corrected” witdhs, which also determine other quantities like ΓZ , σ
peak and Rhad, one

may directly derive bounds on the additional contributions using the results presented in Tab.
7. It shoud be noted, however, that the effective cross-section Eq. (172) is also directly affected
through the mixing term Eq. (175) which shifts the Z-peak according to Eqs. (179) and (181).

New Z ′’s also modify low energy NC quantities. For example, in νµe scattering additional contri-
butions may be absorbed into effective Zee couplings vνe = (ενeL + ενeR )/2, aνe = (ενeL − ενeR )/2 for
which one finds

∆ενeL,R = ε
′

L,R − εSML,R

= ∆ρ0

(

εSML,R + 2
s2gc

2
g

c2g − s2g

)

+ sin θ sin2Θg

√
λ ((ve ± ae)(v

′
ν + a′ν) + (v′e ± a′e)(vν + aν))

+ sin2Θgλ
M2

Z

M2
Z′

(v′e ± a′e)(v
′
ν + a′ν) . (262)

Similay formulae are obtained for νN scattering.

At present there in no phenomenological evidence for new Z ′’s. The direct bound on the Z ′ mass

MZ′ > 300 GeV (263)

coming from the pp̄ colliders (CDF in particular) is quite model-independent [92]. On the other
hand, signals which could be seen at LEP and in low energy NC processes are rather model-
dependent. Fortunately, LEP and NC data provide complementary bounds on the mixing angle θ.
The Z resonance observations are mainly sensitive to mixing. Typical (90% CL) allowed regions
for ξ0 = −θ

√
λ and lower bounds for MZ′ are the following [90,92,93,94]:

model β ξ0 (θ) (radians) MZ′ (GeV)
CDF electroweak data

χ 0 −0.015 ≤ ξ0 ≤ 0.005 340 290(600)
ψ π/2 −0.004 ≤ ξ0 ≤ 0.021 350 250(550)

η − arctan
√

5
3

−0.024 ≤ ξ0 ≤ 0.075 320 110(330)

LR 0 −0.004 ≤ θ ≤ 0.020 360 270(800)

(264)

In parantheses are given the lower bounds for MZ′ when the Higgs constraint is applied. Very

little room remains for ξ0 outside the “central” range |β + arctan
√

5
3
| ≤ 30◦. The best place to
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put model-independent bounds on the Z’ mass are the future hadron colliders by looking for direct
production. If such gauge bosons would be found they would be a strong indication for unified
gauge models.

Finally, we mention Z ′ contributions to parity violation in atoms. For an atom with Z protons
and N neutrons, the weak charge is defined by

Qw = −4ae {vu (2Z +N) + vd (Z + 2N)} (265)

It is shifted due to ρ0 6= 1 by

∆Qρ
w = ∆ρ0

(

QSM
w + 4Z

s2gc
2
g

c2g − s2g

)

(266)

where the second term is due to the change of sin2Θg. The change of the Z couplings due to
mixing (to linear order in sin θ) yields

∆Qθ
w = sin θ sin2Θg

√
λ
(

a′e/aeQ
SM
w − 4ae {v′u (2Z +N) + v′d (Z + 2N)}

)

. (267)

Finally, the contribution from direct Z ′ exchange is given by

∆QZ′

w = −4a′e sin
2Θgλ

M2
Z

M2
Z′

{v′u (2Z +N) + v′d (Z + 2N)} (268)

where we have used Eqs. (247) and (252). Altogether, we have

∆Q′
w = Q′

w −QSM
w = ∆Qρ

w +∆Qθ
w +∆QZ′

w (269)

which is constrained, for Z=55 and N=78, by Eq. (220). Again the bounds are very model
dependent and will not be reported here [95,96]. Notice that the two terms contributing to ∆Qρ

w

essentially cancel for Cesium: We find ∆Qρ
w ≃ 0.1 ∆ρ0 for sin2Θg = 0.23. This result agrees with

the observation of Ref. [76] that the weak charge of Cs is largely independent of ∆ρ. However, we
neither agree with Ref. [95], where the second contribution to ∆Qρ

w is not taken into account, nor
with Ref. [96] where the second term has a different coefficient of opposite sign.
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7.4 SUSY particles

Supersymmetric extensions of the Standard Model require the existence of new superpartners for
all known leptons, quarks, gauge and Higgs bosons. They are called sleptons, squarks, gauginos
and higgsinos, respectively. In addition there must be at least one extra Higgs doublet which also
has its SUSY partners. We restrict ourselves to a discussion of the minimal supersymmetric SM
(MSSM) which usually is thought as a renormalizable low energy effective theory emerging from a
supergravity (SUGRA) model [97]. The Lagrangian exhibits global supersymmetry softly broken
at a scale MSUSY commonly taken to coincide with the “new physics scale” ΛNP ≃ 1 TeV, where
the SM is expected to loose its validity. If one assumes the SUSY particles (sparticles) all to have
masses below MSUSY , then light sparticles of a few tens of GeV are expected in the spectrum. The
MSSM scenario is characterized by the following features:

• the gauge group is the SM gauge group and no new heavy gauge bosons besides the W and
Z exist;

• there are no new matter fields besides the quarks and leptons and two Higgs doublets which
are needed to provide supersymmetric masses to quarks and leptons;

• it follows that gauge- and Yukawa-couplings of the sparticles are all fixed by supersymmetry;

• in spite of some constraints, masses and mixings of the sparticles remain quite arbitrary.

In addition one assumes that

• flavor- and CP-violation is as in the SM, namely coming from the (now supersymmetrized)
Yukawa couplings only.

This implies that at some grand unification scale MX there is a universal mass term for all scalars
as well as a universal gaugino mass term, i. e. the SUSY-breaking Majorana masses of the gauginos
are equal at MX . A further assumption is that

• R-parity, even for particles, odd for sparticles, is conserved.

This is a strong assumption implying that sparticles must be produced in pairs and that there
exists a absolutely stable lightest supersymmetric particle (LSP).

Although local gauge symmetry and supersymmetry constrain the structure of the models there
are many additional free parameters like the sfermion masses and mixing parameters and the
gaugino-higgsino masses and mixing parameters. The MSSM parameter space is the following:

7.4.1 MSSM parameters

i) Higgs sector

The parameters of the MSSM Higgs sector are the same as the ones for the two doublet Higgs
model considered in Sec. 7.2 with the SUSY constraints Eq. (237). The tree level mass constraints
imply mh ≤ MZ | cos 2β| ≤ MZ and the upper bound is saturated at β = π/2. If the two Higgs
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VEV’s are equal, v1 = v2 and thus tan β = 1, then mh = 0. The CP-odd scalar mass mA is a key
parameter. The limiting cases are

1) mA → ∞ :
m± → mA

mH → mA

mh → MZ | cos 2β|
sin2(α− β) → 1

(270)

and the light Higgs h couples as in the minimal SM.

2) mA → 0 :
m± → MW

mH → MZ

mh → 0
sin2(α− β) → sin2 2β .

(271)

From the tree level constraints we would conclude that tanβ ≃ 1 is excluded by the Higgs mass
bound mh > 49 GeV from LEP. Using Eq. (237), and assuming that the solution with tanβ =
vtop/vbottom > 1 is realized we obtain

tanβ > 2.38 (1.82) if mA ≤ 1 TeV(∞) . (272)

The assumption made is suggested by the fact that mt ≫ mb which lets look vtop/vbottom < 1
unnatural. For this solution we have

cos 2β =
1− tan2 β

1 + tan2 β
< 0 . (273)

Another consequence of the Eq. (237) is the following. Since at LEP2 one should be able to detect
a Higgs up th mh ≃MZ the MSSM could be ruled out if no Higgs is found. Recently, it has been
discovered [98] that radiative corrections to the mass relations Eq. (237) may be huge if the top is
heavy.14 The conclusions thus must be modified accordingly. The major impact is that the bound
mh ≤MZ gets changed to the much weaker bound mh ≤ 1.2 (1.6)MZ if mt = 150 (200) GeV. For
mt ≃ 100 GeV the shift is about 2 GeV. MQ̃ = 1 TeV has been taken here.

14Haber and Hempfling [98] derived an expression for

∆m2
h ≡ m2

h0 −M2
Z

by calculating the shift for tanβ = ∞ (β = π/2) where the bound mh0 = MZ is saturated, and correcting for finite
β at tree level:

∆m2
h =

(

∆m2
h

)

β=π/2
− 1

2

(

√

(m2
A −M2

Z)
2 + 4m2

AM
2
Z sin2 2β − (m2

A −M2
Z)

)

.

The shift is given by the difference of the h and Z self-energy functions (with tadpoles omited) minus a tadpole
contribution

(

∆m2
h

)

β=π/2
= Re

{

Πhh(M
2
Z)−ΠZZ(M

2
Z)
}

− g

2MW
Th(0) .

This correction turns out to be large if MZ < mt ≪ MQ̃. If one neglects t̃L − t̃R mixing the leading term is given
by

∆m2
h ≃ 3g2m4

t

8π2M2
W

ln

(

M2
Q̃

m2
t

)

+ · · ·

The same leading behavior is obtained for tanβ = 1 (β = 0) where mh0 = 0, so that this kind of shift looks to be
universal.
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ii) Sleptons and squarks sector

The diagonal masses of the sfermioms are given by

m2
f̃L

= M2
F̃L

+m2
f +M2

Z cos 2β (T3f −Qfs
2
W )

m2
f̃R

= M2
F̃ +m2

f +M2
Z cos 2β Qfs

2
W (274)

where

MF̃L
=

{

ML̃ ; f = ν, e
MQ̃ ; f = u, d

MF̃ =MẼ ,MŨ ,MD̃ ; f = e, u, d

are the soft SUSY-breaking masses. In particular, this mass interdependence implies the constraints
(setting m2

e, m
2
d −m2

u ≃ 0)

m2
ẽL

−m2
ν̃L

= m2
d̃L

−m2
ũL

= −M2
W cos 2β (275)

for the mass splittings of the SUSY partners of the light fermions. In addition L-R mixing terms
A

(f)
mix (f̃

∗
Lf̃R + f̃ ∗

Rf̃L) are present where the mixing parameters are of the form

A
(f)
mix = mf (Af − µ cotβ) (276)

and At is another model dependent soft SUSY breaking parameter. For the stop sector neglecting
the bottom mass (mb = 0) the mass matrix is of the form

(t̃∗L, t̃
c
R)

(

m2
b̃L

+m2
t +M2

W cos 2β mtAt
mtAt m2

t̃R

)(

t̃L
t̃∗cR

)

such that the physical masses are given by

m2
t̃1,2

=
1

2

{

m2
b̃L

+M2
Ũ + 2m2

t +M2
W cos 2β (1 +

2

3
tan2ΘW )

∓
√

(m2
b̃L

−M2
Ũ
+M2

W cos 2β (1− 2

3
tan2ΘW ))2 + 4m2

tA
2
t







(277)

with mt̃1 ≤ mt̃2 and the mixing angle is given by

tanφt =
m2
t̃1
−m2

b̃L
−m2

t −M2
W cos 2β

mtAt
(278)

where m2
b̃L

is the physical mass of the left-handed sbottom. Notice that in the limit mb = 0,

considered here, the b̃L does not mix with the b̃R.

For simplicity we will assumeMQ̃ =MŨ =MD̃ ≃ mq̃ where mq̃ represents an average squark mass.

Family mixing will be neglected here.

ii) Chargino-neutralino (gaugino-higgsino) sector

The chargino-neutralino sector is given by the SUSY partners of the gauge bosons and the Higgs
scalars. The mixing of the states depends on the following parameters:
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• tanβ

• µ the supersymmetric higgsino mass

• M the SU(2)L gaugino mass

• M ′ the U(1)Y gaugino mass

• mg̃ the SU(3)c gluino mass .

The two chargino mass eigenstates χ̃±
1 and χ̃±

2 (charged Dirac fermions) are mixtures of winos W̃±

and higgsinos φ̃± and H̃±. The mixing is described by the 2× 2 matrix (in the (W̃+, H̃+) basis)
(

M
√
2MW sin β√

2MW cos β µ

)

.

(279)

The neutralinos χ̃0
i (i = 1, 2, 3, 4) (neutral Majorana fermions), labeled in order of increasing mass,

are obtained by diagonalizing the 4× 4 mixing matrix (in the (B̃, W̃3, h̃, H̃) basis)











M ′ 0 −MZ cos β sinΘW MZ sin β sin ΘW

0 M MZ cos β cosΘW −MZ sin β cosΘW

−MZ cos β sinΘW MZ cos β cosΘW 0 −µ
MZ sin β sin ΘW −MZ sin β cosΘW −µ 0











.

(280)

Usually a grand-unification assumption

M ′ =
5

3
tan2ΘW M =

5

3

α

cos2ΘWαs
mg̃ (281)

is made which holds in supergravity (SUGRA) scenarios.

7.4.2 Mass limits for sparticles

The fact that no SUSY particles have been seen until now may be expressed more quantitatively
in term of lower bounds for sparticle masses [4,99,100]. These limits usually refer to the MSSM
and the assumption of R-parity conservation. Part of the limits are direct search bounds, some
derive from the fact that the partial Z widths are rather close to the SM prediction and finally
there are limits which derive from the mass relations Eqs. (237) and (272-281).

An important bound was obtained at CDF for the gluino mass [4]

mg̃ > 150 GeV (282)

which implies bounds on M and M ′ through the unification condition Eq. (281). Bounds from
UA2 and CDF [4] for the squark masses are given by

mq̃ > 90 GeV . (283)

The sneutrino mass is constrained by the absence a the corresponding contribution (Γν̃ = 1/2ΓSMν
if mν̃ < MZ/2) to the Z width, yielding

mν̃ > 29 (39) GeV if only one light ν̃ (if three light ν̃ ′s) (284)

is (are) assumed. For left-handed sleptons direct LEP searches [99] yield the limit mℓ̃L
> 43 GeV

. Here, using Eq. (275), a stronger bound follows from the sneutrion mass bound

mℓ̃L
> 73 (65) GeV if mA ≤ 1 TeV (∞) . (285)
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Since the right-handed sleptons are not related to sneutrino masses and a massless mℓ̃R
would

contribute 17.3 MeV only to the Z width only direct search limits can be given. LEP searches give

mℓ̃R
> 41 GeV ℓ = e, µ, τ . (286)

Finally, bounds on chargino and neutralino are as follows: For the lightest chargino Z width bounds
imply

mχ̃± > 45 GeV . (287)

Within the MSSM such a limit yields a bound

mχ̃1
± −mχ̃1

0 > 13 (5) GeV (288)

if we assume mq̃ ≤ 1 TeV (5 TeV). Bounds on the neutralinos are more difficult to obtain. For the
lightest neutralinos only bounds deriving from the MSSM assumptions, the unification condition,
in particular, give restrictions. They are very weak mχ̃1

0 , mχ̃2
0 > a few GeV, however. A bound

mχ̃3
0 > 61 GeV (289)

follows from the Z width [100].

7.4.3 Virtual effects from sparticles

For the minimal supersymmetric extension of the Standard Model one-loop radiative corrections
have been calculated by several authors [101-108]. We concentrate our discussion to the contribu-
tions of SUSY particles to the ρ-parameter. The contributions from the Higgs scalars, the sfermion
scalars and the gaugino-higgsino fermions may be considered separately

∆ρSUSY = ∆ρH +∆ρSF +∆ρGH . (290)

(a) Higgs contributions

The two doublet Higgs contribution Eq. (236) to the ρ parameter is now constrained by the mass
relationships Eq. (232). From the limiting cases Eqs. (270) and (271) one finds

∆ρH ≃
√
2GµM

2
Zc

2
W

16π2

{

3 cos2 2β

(

ln c2W
c2W − 1

− 1

c2W

)

− sin2 2β
ln c2W
c2W − 1

+ 1

}

; mA → 0 (291)

which maximizes ∆ρH for cos2 2β = 1. On the other hand

∆ρH ≃
√
2GµM

2
Zc

2
W

16π2
3 fH(cos

2 2β, c2W ) ; mA → ∞ (292)

minimizes ∆ρH for cos2 2β = 1. As a result the total contribution from the Higgs sector is bound
by (for s2W = 0.22)

−3.1 × 10−4 ≤ ∆ρH ≤ 3.6× 10−4 (293)

beyond observability at LEP experiments. This is much smaller than the SM Higgs contribution

∆ρHSM ≃ −2.2 × 10−3 for mH ≃ 1 TeV (294)

and also is in contrast to the large effects Eqs. (237) and (238) possible in two doublet models of
non-SUSY type.
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(b) SUSY partners of the light fermions.

We first should mention that SUSY partners of fermions occur in pairs, one sfermion for each
helicity. The contributions of the scalar sleptons and squarks to the vector boson self-energies are
given by Eq. (235). Notice that fS(m

2
1, m

2
2) vanishes for equal masses. Hence only pairs of fermions

with different masses contribute. Two fermion doublet partners yield a ρ-parameter contribution

∆ρsfermion doublet =

√
2GµNcf

16π2
fS(m̃

2
1, m̃

2
2) (295)

which is half of a corresponding fermion doublet contribution.

The SUSY partners of zero mass fermions cannot give large contributions. The spartners of
the right-handed fermions do not contribute, since (in the zero fermion mass limit) they do not
couple to W± and W3. For the left-handed fermion spartners gauge symmetry requires the SUSY-
breaking masses to be equal such that mass differences can only be due to the gauge symmetry
breaking which leads to the mass differences Eq. (275). We consider the sleptons first. The largest
contribution can be obtained if all sneutrino masses vanish and the slepton masses are equal to
the W mass and if we assume, unrealistically, that right- and left-scalars give equal contributions.
Then

∆ρsleptons ≤
√
2GµNf

16π2
≃ 2.1× 10−3 (Nf = 3) . (296)

Taking into account the actual mass limit for the sneutrino mass Eq. (284) this bound improves
to

∆ρsleptons ≤ 1.1× 10−3 (Nf = 3, mν̃ > 39 GeV) . (297)

For the squarks a similar result is obtained

∆ρũ,d̃,s̃,c̃ ≤ 0.8× 10−3 (mq̃ > 90 GeV) . (298)

(c) SUSY partners of t and b.

Taking into account the t̃L − t̃R mixing one obtains [105]

∆ρt̃,b̃ =

√
2Gµ

16π2

{

cos2 φtfS(m
2
t̃1
, m2

b̃L
) + sin2 φtfS(m

2
t̃2
, m2

b̃L
)− cos2 φt sin

2 φtfS(m
2
t̃1
, m2

t̃2
)
}

(299)

where the masses and the mixing angle are given by Eqs. (277) and (278). Again some limiting
cases best illustrate the kind of contributions one may obtain. The key parameter is the soft SUSY
breaking parameter m =MF̃ of Eqs. (274) and (277). Barbieri and Maiani [101] have summarized
the result as follows:

• Squarks give a significant only if the associated fermion doublet splitting is greater than m.
For the tb-doublet one finds (mb = 0)

∆ρstop =

√
2GµNcf

16π2
m2
t ; (mt ≫ m) . (300)

This contribution is equal in size with the top contribution itself and thus the top mass
bound would be scaled to smaller values by a factor

√
2 if m is small. Again, for simplicity,

we have assumed the right- and left-scalars to be degenerate and give equal contributions.
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• The other limiting case we have for m large (assuming tan β = 1 for simplicity) yielding

∆ρstop =

√
2GµNcf

16π23

m4
t

m2
(1− 2a+

8

5
a2) ; (mt ≪ m) (301)

where a = At/2mt is taken to be of order O(1). The truth lies somewhere between the two
cases. One may identify m with the average squark mass mq̃ obeying the bound Eq. (283).

A global analysis by Bilal et al. [109] yields the top mass bound

mt = 131+24
−28 GeV, sin2ΘW = 0.2272+0.0035

−0.0032 (302)

for mq̃ = 150 GeV and tanβ = 1.3 which compares with the SM value

mt = 135+27
−31 GeV, sin2ΘW = 0.2271+0.0035

−0.0032 . (303)

For lower values of mq̃ the changes of the upper bound is more significant. For mq̃ = 80 GeV the
upper bound decreases to 143 GeV while the lower bound remains essentially unaffected.

(d) Gaugino-higgsino contributions.

Charginos and neutralinos are fermions. Their contribution to the ρ-parameter may be evaluated
using the following functions. A fermion loop with masses m1 and m2 and couplings ψ̄1 (v −
aγ5) γµψ2 V

µ yields the contribution [101]

Πf
V (0) =

1

16π2

{

|v|2ff (m1, m2) + |a|2ff(−m1, m2)
}

(304)

with

ff (m1, m2) = (m1 −m2)
2 ln

Λ4

m2
1m

2
2

− 2m1m2 −
m4

1 +m4
2 − 2m1m2 (m

2
1 +m2

2)

m2
1 −m2

2

ln
m2

1

m2
2

.

Here Λ is a cut-off which cancels in physical quantities. In principle, it is straight forward to
write down the general expression for ∆ρ = ΠW (0)/M2

W −ΠZ(0)/M
2
Z in terms of the chargino and

neutralino masses and the W±χ̃i
∓χ̃j

0 the Zχ̃i
±χ̃j

∓ and the Zχ̃i
0χ̃j

0 couplings. While it is easy to
diagonalize the 2× 2 chargino mass matrix analytically the diagonalization of the 4× 4 neutralino
mass matrix is easier to do numerically.

The largest contribution to the ρ-parameter from this sector is obtained if the soft SUSY breaking
parameters vanish. In this limit a fairly simple result follows [105]

∆ρGHmax =

√
2GµM

2
W

16π2

{

−6 +
cos2 2β

c2W

+
8 cos2 βc2W − 1 + 4s2W − cos 2β

c2W − 1/(2 cos2 β)
ln (2 cos2 βc2W )

+
8 sin2 βc2W − 1 + 4s2W + cos 2β

c2W − 1/(2 sin2 β)
ln (2 sin2 βc2W )

}

(305)

which for mχ̃±

1
> 45 GeV leads to the bound

∆ρGH < 1.4× 10−3 . (306)

So far we only considered the universal vector-boson self-energy contributions. There are additional
process-dependent vertex and fermion self-energy corrections coming from the gaugino-higgsino
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sector. These may be of the same size and of either sign as the universal corrections. In Ref. [106]
these effects have been investigated using the renormalization scheme with α, Gµ and sin2Θνµe as
input parameters. For the range 0 ≤M ≤ 250 GeV and 0 ≤ |µ| ≤ 200 GeV in the gaugino-higgsino
parameter space, taking into account the phenomenological constraints for the SUSY masses, the
following results have been found for tanβ = 2 (8):

∆ρSUSY = +2× 10−3 to − 2.5× 10−3

δMSUSY
W = −100 MeV to − 150 MeV (307)

δMSUSY
Z = −150 MeV to − 250 MeV

and for most of the above (M,µ)-window. By a factor 1.5 larger values are obtained near to the
rim of the allowed regions. The shift in MW for fixed α, Gµ and MZ may be obtained using the
relation

∆r =
∆M2

W

M2
W

+
c2W
s2W

(

∆M2
Z

M2
Z

− ∆M2
W

M2
W

−∆ρ

)

(308)

and Eq. (101). One typically obtains (estimated from the Figures of Ref. [106])

(M,µ, tanβ) δMSUSY
W δMSUSY

W δρSUSY δ∆rSUSY δMSUSY
W (MZ fixed)

(100,−100, 2) −135 −200 0.00015 −0.011 −191
(100,−100, 8) −145 −220 0.00020 −0.008 −142
(100,+100, 8) −180 −225 0.00000 −0.006 −102
( 20,− 20, 2) −190 −300 0.00160 −0.016 −277

where M and µ are given in GeV and the mass shifts in MeV. All these contributions (for allowed
low values of the soft SUSY breaking parameters) have the same sign as the top contribution and
thus would strengthen the upper bound for mt.

We may summarize the results as follows:

Virtual effects of supersymmetry may be observable in precision measurements at LEP if the
masses of SUSY particles are close to the present experimental mass bounds. In this case the soft
SUSY-breaking parameters (scale MSUSY ) must be rather small. Under reasonable assumptions
for the parameter ranges |∆ρSUSY | <∼ 3× 10−3 and 100 MeV ≤ −δMSUSY

W ≤ 300 MeV.

On the other hand, in the limit where MSUSY gets large all SUSY effects decouple and no heavy
physics is left over.

Finally, I should mention that the now precise knowledge of the gauge couplings allows to test
grand unification scenarios. Recent studies [110] show that SUSY models are the best candidates
compatible with grand unification ideas. While the running couplings within the SM do not merge
in a unification point, supersymmetric theories with a grand desert between the SUSY and the
grand unification scale (∼ 1016 GeV), for MSUSY in the range MZ − 1 TeV, are in agreement with
present data.
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Appendix: Renormalization of models with ρtree 6= 1

One of the crucial features of the SM is the validity of the relationship

ρ =
GNC

GCC
=

M2
W

M2
Z cos2Θg

= 1 , cos2Θg =
g2

g2 + g′2
(309)

at the tree level. Many extensions of the minimal SM share this property with the SM. Examples are
models with additional fermion families, additional scalar doublets, νR singlets, massive neutrinos
which might exhibit ν-mixing and minimal supersymmetric extensions of the SM. For all these
models

GNC

GCC

(0) = ρ = 1 +∆ρ (310)

is a calculable quantity which is sensitive to weak hypercharge breaking and weak isospin breaking
due to mass splittings of multiplets. In particular, for a fermion doublet

∆ρf =
Πf
Z(0)

M2
Z

− Πf
W (0)

M2
W

=
g2

cos2ΘgM
2
Z

Π̂f
33(0)−

g2

M2
W

Π̂f
±(0)

=
g2

M2
W

(

Π̂f
33(0)− Π̂f

±(0)
)

=

√
2GµNcf

16π2

(

m2
1 +m2

2 + 2
m2

1m
2
2

m2
1 −m2

2

ln
m2

1

m2
2

)

≃
√
2GµNcf

16π2
m2

1, m2
1 ≫ m2

2 (311)

is finite and exhibits large non-decoupling heavy particle effects.

Extensions of the SM which do not respect the condition ρtree = 1, in a way, are fundamentally
different, since now

Πf
Z(0)

M2
Z

− Πf
W (0)

M2
W

=
g2

M2
W

(

ρΠ̂f
33(0)− Π̂f

±(0)
)

(312)

is not finite any longer. Such models, for example, are models with triplet Higgs contaminations
[84], models with an extra U(1)Y ′ etc. ρ or equivalently GNC = ρGµ, now, is a new free parame-
ter which requires independent renormalization. This has far reaching consequences because the
quantity ΠZ(0)

M2
Z

− ΠW (0)
M2

W

exhibiting the leading heavy particle effects is not observable any more and

most of the sensitivity to heavy particle effects is lost as we shall see in the following.

At tree level the following identities hold for the bare parameters:

i)
√
2GNCb = παb

M2
Zb

cos2 Θgb sin
2 Θgb

ii)
√
2Gµb = παb

M2
Wb

sin2 Θgb

iii) ρb =
M2

Wb

M2
Zb

cos2 Θgb
= GNCb

Gµb

(313)

where four parameters are independent. For the independent parameters we may choose α, MW ,
MZ and sin2Θg = sin2Θe where α, MW and MZ have the usual definition and sin2Θe may be
defined from the left-right asymmetry at the Z-resonance.

The implications of a four parameter renormalization are considered now:
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i) NC-processes

may be parametrized conveniently by α, MZ , GNC(0) and s
2
e = sin2 Θe. From the bare parameter

relation Eq. (313i) we obtain

√
2GNC =

πα

M2
Z cos2Θe sin

2Θe

(1 + δNC) (314)

with

δNC =
δα

α
− δM2

Z

M2
Z

− δGNC

GNC

− c2e − s2e
c2e

δs2e
s2e

. (315)

By the above definition of the parameters δα
α

and
δM2

Z

M2
Z

are given by the usual expressions. Fixing
δs2e
s2e

from ALR(s =M2
Z) (requiring the Born formula to be exact) we obtain

δs2e
s2e

= −
(

ce
se

ΠγZ(M
2
Z) + ΠγZ(0)

M2
Z

+ AZeeκ (M2
Z)−

ce
se

ΠγZ(0)

M2
Z

)

= −ce
se
Π′
γZ(M

2
Z)− 2

ce
se

ΠγZ(0)

M2
Z

−∆κe,vertex(M
2
Z) . (316)

Defining GNC(0) = GNC in low-momentum-transfer νµe-scattering we have

δGNC

GNC
= −ΠZ(0)

M2
Z

+RLNC (317)

with

RLNC = −
(

AZeeL (0) + AZννL (0) + AboxLNC(0)
)

= K

{

4c2WL− 24c4W − 20c2W + 15

4c2W

}

. (318)

Thus

δNC = Π′
γ(0)− Π′

Z(M
2
Z) +

c2W − s2W
c2W

cW
sW

Π′
γZ(M

2
Z) + δvertex+boxNC

= ∆α +
1

c2W
∆1 + δvertex+boxNC

δvertex+boxNC = K

{

24c4W − 20c2W + 15

4c2W

}

+
c2W − s2W
c2W

∆κe,vertex . (319)

Since GNC is an independent parameter here, and hence appears subtracted independently of Gµ,

no term ΠZ (0)
M2

Z

− ΠW (0)
M2

W

is left over.

For the leading heavy particle effects we obtain

δtopNC = −K 2

3c2W
ln
m2
t

M2
Z

δHiggsNC = K
1

3c2W

(

ln
m2
H

M2
Z

− 5

3

)

. (320)

ii) CC-processes
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may be parametrized in terms of α, MW , Gµ and sin2Θe. From the bare parameter relation Eq.
(313ii) we get

√
2Gµ =

πα

M2
W sin2Θe

(1 + δCC) (321)

where α and MW are renormalized as usual and sin2Θe as in the NC case. With Gµ fixed from
the µ decay rate we have

δGµ

Gµ
= −ΠW (0)

M2
Z

+RLCC (322)

with

RLCC = −
(

AWµν
L (0) + AWeν

L (0) + AboxLCC(0)
)

= K

{

4L− 4c2W + 3

2s2W
ln c2W − 6

}

. (323)

Thus

δCC =
δα

α
− δM2

W

M2
W

− δGµ

Gµ
− δs2e

s2e

= Π′
γ(0)− Π′

W (M2
W ) +

cW
sW

Π′
γZ(M

2
Z) + δvertex+boxCC

= ∆α +∆1 +∆2 + δvertex+boxCC

δvertex+boxCC = K

{

4c2W + 3

2s2W
ln c2W + 6

}

+∆κe,vertex . (324)

The leading heavy particle effects in this case are

δtopCC = K
4

3
ln

m2
t

M2
W

δHiggsCC = K
1

3

(

ln
m2
H

M2
W

− 5

3

)

. (325)

The relation obtained may be used to predict MW from α, MZ and sin2Θe

M2
W =

πα√
2Gµ sin

2Θe

(1 + δCC) (326)

which replaces the SM prediction of MW from α, Gµ and MZ .

As a third relation we now consider the bare parameter relation Eq. (313iii).

iii) NC versus CC

For the renormalized quantities this reads

ρ =
GNC

Gµ
=

M2
W

M2
Z sin2Θe

(1−∆ρ̂′) (327)
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where ∆ρ̂′ = δCC − δNC . Thus

∆ρ̂′ = −s
2
W

c2W
∆1 +∆2 +∆ρ̂

′vertex+box

∆ρ̂
′vertex+box = K

{

4c2W + 3

2s2W
ln c2W + 6− 24c4W − 20c2W + 15

4c2W

}

+
s2W
c2W

∆κe,vertex . (328)

Here the leading heavy particle terms read

∆ρ̂
′top = K(

4

3
+

2

3c2W
) ln

m2
t

M2
W

∆ρ̂
′Higgs = −K 1

3

s2W
c2W

(

ln
m2
H

M2
W

− 5

3

)

. (329)

Obviously no terms proportional to m2
t have survived and the leading heavy Higgs terms are

reduced by roughly a factor 10! relative to the minimal SM.

Additional parameter relations:

The relationship sin2Θe versus sin
2Θνµe remains the same as in the minimal SM. Considering the

on-shell Zff̄ vertex

(√
2GNC

)1/2
MZγµ

(

−2Qf sin
2Θe + (1− γ5) T3f

)

the mixing parameter sin2Θe is exact for f = e, µ, τ . The renormalized on-shell vertex is given by

(√
2GNCf

)1/2
MZγµ

(

−2Qf sin
2Θf + (1− γ5) T3f

)

where

GNCf = ρZfGNC , sin2Θf = (1 + ∆κef) sin2Θe (330)

with

∆κef = ∆κf −∆κe = ∆κf,vertex −∆κe,vertex

GNCf(M
2
Z)/GNC(0) = ρZf = 1 +∆Z +∆ρf,vertex −K

{

24c4W − 20c2W + 15

4c2W

}

where ∆Z is defined in Eq. (146) and ∆top
Z = 0 and ∆Higgs

Z = 0 for the heavy top and Higgs limit.
As a result we conclude: LEP experiments alone cannot test heavy particle effects besides the
heavy top effects from the Zbb̄ vertex which yields the result (119).

In the relations between low-energy NC and Z-peak NC processes terms proportional to lnm2
t and

lnm2
H may be tested. Since these terms are small and the low-energy NC data have only limited

precision the prospects to get limits on mt and mH are rather bad in such a scenario.

How to recover the SM relations:

Using the experimental fact that ρ = GNC/Gµ is close to unity we may write

ρ =
GNC

Gµ
= 1 +∆ρ =

M2
W

M2
Z cos

2Θe
(1−∆ρ̂′)

ρ̂ =
M2

W

M2
Z cos2Θe

=
cos2ΘW

cos2Θe
=

1

1−∆ρ−∆ρ̂′
=

1

1−∆ρ̂
. (331)
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Thus for the prediction of sin2Θe from α, Gµ and MZ

√
2GµρM

2
Z cos2Θe sin

2Θe = πα (1 + δNC)√
2GµM

2
Z cos

2Θe sin
2Θe =

πα

1−∆re
(332)

where

∆re = δNC −∆ρ = ∆α−∆ρ+
1

c2W
∆1 +∆re,vertex+box

which is identical with the SM form, however, with the replacement

∆ρ =
ΠZ(0)

M2
Z

− ΠW (0)

M2
W

→ ∆ρ =
GNC −Gµ

Gµ
. (333)

Eliminating sin2Θe from
√
2GµM

2
W sin2Θe = πα (1 + δCC) using ρ̂ = cos2ΘW/ cos

2Θe we obtain
the relation for the prediction of MW in terms of α, Gµ and MZ :

√
2GµM

2
W

(

1− M2
W

M2
Z

(1−∆ρ̂)

)

= πα(1 + δCC)

√
2GµM

2
W

(

1− M2
W

M2
Z

)

= πα

(

1 + δCC − c2W
s2W

∆ρ̂

)

= πα (1 + ∆r) (334)

with ∆r given by Eqs. (84,148) with the replacement (333).

This is a very puzzling situation. The interpretation of measurements looks extremely different
for theories with ρtree = 1 from those with ρtree 6= 1. In the second case one does not have an
“explanation” why GNC ≃ Gµ. Only models with ρtree = 1 seem to be natural in reality.

8. SUMMARY AND CONCLUSIONS

In the first year of LEP the four collaborations ALEPH, DELPHI, L3 and OPAL have determined
the main properties of the Z boson with high accuracy under optimum experimental conditions.

Radiative corrections play a crucial role in understanding electroweak precision measurements
in particular the ones which appear at the Z resonance. First of all the radiative corrections
calculated in the SM are needed to pin down limits for the missing SM parameters like the top
and the Higgs mass. Since these particles are too heavy to be produced at present one has to
resort to a precise measurement of higher order effects. In a further step the electroweak radiative
corrections play an important role as sensors for new physics. Before the interesting physics can
be extracted from the experimental data these have to be disentangled from detector cuts and
efficiencies and from the large universal but cut-dependent QED-corrections. Much emphasis has
been put therefore on a precise understanding of QED-effects and on their implementation in Monte
Carlo event generators which provide the bridge between the raw data and the detector independent
“bare” observables of actual physical interest. The calculation of radiative corrections is well
established theoretically for: the Z line-shape (including full O(α2) QED-corrections), the partial
and total Z-widths and the asymmetries, (excluded subleading O(α2) QED-corrections to AFB)
and the prediction of the W -mass (equivalently ∆r and sin2ΘW ). There is complete agreement
for the analytic expressions at the one-loop level and on the treatment of the leading higher order
terms. The theoretical uncertainties: δ(∆r)hadrons = 0.0009, δ(∆r)top = 0.0005 (mt < 150 GeV )
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and δ(∆r)higher−order = 0.001 are small enough and will not obscure the meaning of precision
measurements.

I focussed on discussing implications of the LEP results for precision tests of the Standard Model.
The main results may be summarized as follows:

• The Z mass measurement provides the third very accurately known parameterMZ = 91.174±
0.005± 0.020 GeV, such that precise predictions are possible using α, Gµ and MZ as input
parameters. The total Z width has been determined to ΓZ = 2.487± 0.009 GeV.

• The neutrino counting yields Nν = 2.96 ± 0.06. Hence, only the 3 known light neutrinos
exist. This result proves that ντ is different from νe and νµ.

• The weak mixing parameter has been determined very precisely. The value sin2 Θ̄ = 0.02315±
0.0027 improves the lower bound for the top mass slightly.

The best direct upper bound on mt is obtained by combining the hadron collider results from the
UA2 and CDF collaborations with the Z mass measurement of LEP.

• The measurement of the mass ratio yields sin2ΘW = 0.2265 ± 0.0062, which together with
MZ determines the mass MW = 80.14 ± 0.32 GeV and implies the bound mt < 202 GeV.
Bounds on mt from global fits including all NC-data have been given in Eqs. (34) and (302).
The total W-width ΓW = 2.17 ± 0.12 GeV has been obtained as an average from the UA1,
UA2 and CDF results.

It should be kept in mind that the top mass bounds refer to the SM. In models which respect
ρtree = 1 these bounds are still pretty save. In extensions of the SM with ρtree 6= 1 the upper
bounds for the top mass are substantially weaker. A global fit [26] in this case yields

• sin2 Θ̄(MZ) = 0.2333±0.0008, ρtree = 0.992±0.011, and mt < 294 (310) GeV at 90% (95%)
CL. The corresponding value for sin2ΘW is 0.2290 ± 0.0034. The uncertainties include the
mt and mH dependence.

The most important direct new physics bounds are

• mH > 49.5 GeV (95% C. L.) (LEP)

• mt > 89 GeV (95% C. L.) (CDF).

• All searches for new particles have been negative. Many lower mass bounds have been
improved. Most of the possible new particles must have masses mnew > MZ/2.

So far the agreement between experimental data and standard model predictions is almost per-
fect. All data are compatible with “no new physics”. A main obstacle for discoveries is the still
incomplete knowledge of the parameters of the SM (mt and mH). To establish deviations we have
to wait for the next step in accuracy. It will be achieved during the next year with about 106 Z’s
per experiment.

From the large number of interesting results testing QCD at the Z mass scale I only mention the
determination of the strong coupling constant [30]
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• αs(M
2
Z) = 0.116± 0.007 .

This is an important input parameter for calculations of radiative corrections.

For future precision measurements the electroweak radiative corrections will play an important
role as they provide a window to new physics. Laking any experimental hints for “where to go”
we have discussed a selection of possibilities for “new physics”. In principle all kind of effects are
possible. On one hand they are severely constrained by the electroweak data on the other hand
one cannot exclude “new physics” to be right “around the corner”. So, there is good hope for
surprises.

So far the agreement between experimental data and standard model predictions is almost per-
fect. All data are compatible with “no new physics”. A main obstacle for discoveries is the still
incomplete knowledge of the parameters of the SM (mt and mH). To establish deviations we have
to wait for the next step in accuracy. It will be achieved during the next year with about 106 Z’s
per experiment.

From the large number of interesting results testing QCD at the Z mass scale I only mention the
determination of the strong coupling constant [30]

• αs(M
2
Z) = 0.116± 0.007 .

This is an important input parameter for calculations of radiative corrections.

For future precision measurements the electroweak radiative corrections will play an important
role as they provide a window to new physics. Laking any experimental hints for “where to go”
we have discussed a selection of possibilities for “new physics”. In principle all kind of effects are
possible. On one hand they are severely constrained by the electroweak data on the other hand
one cannot exclude “new physics” to be right “around the corner”. So, there is good hope for
surprises.
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eds. M. Cvetič, P. Langacker, World Scientific Publ., Singapore, 1991;
PSI preprint, PSI-PR-91-08.

108



30. T. Hebbeker, in Proc. of the XX. International Symposium on Multiparticle Dynamics

1990, eds. R. Baier, D. Wegener, World Scientific, Singapore (1991).

31. M. Veltman, Nucl. Phys. B 123 (1977) 89;
M. S. Chanowitz et al., Phys. Lett. 78 (1978) 1;
M. B. Einhorn, D. R. T. Jones, M. Veltman, Nucl. Phys. B 191 (1981) 146;
M. Consoli, S. Lo Presti, L. Maiani, Nucl. Phys. B 223 (1983) 474;
J. Fleischer, F. Jegerlehner, Nucl. Phys. B 228 (1983) 1.

32. J. J. van der Bij, M. Veltman, Nucl. Phys. B 231 (1984) 205.

33. J. J. van der Bij, Nucl. Phys. B 248 (1984) 141.

34. F. Halzen, B. A. Kniehl, Nucl. Phys. B 353 (1991) 567.

35. M. Veltman, Acta Phys. Pol. B8 (1977) 475;
M. B. Einhorn, J. Wudka, Phys. Rev. D 39 (1989) 2758.

36. M. Consoli, W. Hollik, F. Jegerlehner, Phys. Lett. 227 (1989) 167.

37. J. J. van der Bij, F. Hoogeveen, Nucl. Phys. B 283 (1987) 477.

38. G. Degrassi, S. Fanchiotti, A. Sirlin, NYU preprint, 1990

39. G. Passarino, M. Veltman, Nucl. Phys. B 160 (1979) 151;
W. Wetzel, Nucl. Phys. B 227 (1983) 1;
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42. M. Böhm, W. Hollik, H. Spiesberger, Fortschr. Phys. 34 (1986) 687.

43. W. Beenakker, W. Hollik, Z. Phys. C 40 (1988) 141.

44. D. C. Kennedy, B. W. Lynn, Nucl. Phys. B 322 (1989) 1.

45. D. J. Broadhurst, Phys. Lett. 101 (1981) 423;
S. Generalis, Open University preprint OUT-4102-13.

46. A. Djouadi and C. Verzegnassi, Phys. Lett. 195 (1987) 265 ;
A. Djouadi, Nuovo Cimento 100A (1988) 357.

47. R. Coquereaux, Ann. of Phys. 125 (1980) 401.

48. D. Yu. Bardin, A. V. Chizov, Dubna preprint E2-89-525 (1989).

109



49. B. A. Kniehl, Nucl. Phys. B 347 (1990) 86;
S. Fanchiotti, B. A. Kniehl and A. Sirlin, Phys. Rev. D 48 (1993) 307; for the small mass
approximation see:
E. G. Floratos, S. Narison and E. de Rafael, Nucl. Phys. B 155 (1979) 115;
A. Djouadi and P. Gambino, Phys. Rev. D 49 (1994) 4705.

50. T. H. Chang, K. J. F. Gaemers, W. L. van Neerven, Nucl. Phys. B 202 (1982) 407;
L. J. Reinders, H. R. Rubinstein, S. Yazaki, Phys. Rep. 127 (1985) 1.
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H. J. Kühn, P. M. Zerwas, in Z Physics at LEP1, eds. G. Altarelli et al., CERN 89-08 (1989).

56. W. Bernreuther, W. Wetzel, Nucl. Phys. B 197 (1983) 228;
W. J. Marciano, Phys. Rev. D 29 (1984) 580.

57. W. Wetzel, Nucl. Phys. B 227 (1983) 1.

58. M. Consoli, A. Sirlin, in [59];
B. W. Lynn, M. Peskin, R. G. Stuart, in [59];
D. C. Kennedy, B. W. Lynn, SLAC-PUB 4039 (1986), Nucl. Phys. B 322 (1989) 1;
G. Burgers, in Polarization at LEP, eds. G. Alexander et al., CERN 88-06 (1988).

59. “Physics with LEP”, CERN 86-02 (1986), eds. J. Ellis and R. Peccei;
“ECFA Workshop on LEP 200”, CERN/ECFA 87-08 (1987),
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