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The aim of the present lectures is to give on an introductory

level an outline of the theory of critical phenomena as developed

during the last decade. Some of the important theoretical ideas

L]
that have contributed to our present understanding of critical

phenomena are:

1873 van der Waals:
1907 Weiss:

1937 Landau:

1944 Onsager:

1965 Widom, Domb, :
Hunter

1966 Kadanoff:

1969 Polyakov, Mig-:

dal, Gribov
1969 Di Castro,:

Jona-Lasinio

1970 Griffith,
Kadanoff

1970 Fisher:

1971 Wilson:

1972 Wilson, Fisher:

1972 Wegner:

1973 Niemeyer, 3
van Leeuwen

1974 Kadanoff,
Houghton,
Wilson

Theory of liquid-gas transition
Molecular field theory of the ferromagnet
Mean field approach to critical phenomena

Exact solution of the Ising model in

two dimensions

Scaling

Scaling and block spin picture

Renormalized field theory approach to

critical phenomena

Renormalization group in the renormalized
field theory approach
(Stiickelberg, Petermann, Gell-Mann, Low 1954)

Universality
Dependence of critical exponents on the
dimension and symmetries

Renormalization group for Ising and

Landau~-Ginzburg model

ge-expansion, critical exponents in 4-¢

dimensions
Fixed point structure, Corrections

Renormalization group for the two dimensional

trianqgular Ising model

Renormalization group calculations for
square (d=2) and cubic (d=3) lattice Ising

models
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These are not all the important contributions. (The choice depends

on my personal taste and ignorance.)

Not listed here are the many important experimental results (the
basis for that which theory has to explain) (see e.g. Kadanoff et al.
(1967), Levelt-Sengers (1973) and de Jongh-Miedema (1974)) and
the numerical calculations on models (see e.g. Wortis (1973))

which were necessary to support and stimulate theoretical devel-

opments.

Also there are many structural results concerning the connection
between statistical mechanics of phase transitions quantum field

theory and probability theory which are not mentioned.

I will mainly concentrate on developing the main ideas needed to
understand some of the main aspects of the physics of phase trans-.
itions using the example of the ferromagnetic Ising model with

short range interactions in d-dimensional space.With suitable modification:
the considerations presented will apply to a large number of other
systems. Numerous calculations have been performed for a large

class of models (by means of doubtful approximation schemes).

The main emphasis of my lectures will be to create an intuitive
understanding of the physics behind the theory describing the cha-
racteristic features of critical phenomena and to show how to cal-
culate critical exponents in simple approximations. This will not
be an easy task. A respectable amount of labor has to be done to

understand "how and why it works".



Part I. Critical Behavior and the Renormalization Group

1. Introduction

The transition from one phase to another like melting or boiling
changes the properties of a system discontinuously. Such discon-
tinuous transitions are called first order phase transitions.

One ore more derivatives of the free energy
F = F(T,7)

with respect to the temperature T or an appropriate ordering field
z are dinscontinuous. A standard example is the liquid gas tran-
sition of a single component system with typical phase diagram

depicted in Fig. 1. The ordering field is the pressure p in this

case.
h
P
solid liquid
]
*— p=p(T)
1
vapor . gas
]
' .‘—-_- T
Fig. 1 Tc
On the phase boundary (coexistence curve)f = C(T) below some tem-

perature Tc two distinct phases can coexist. The two phases are
characterized by two different values of the order parameter ¢,
the basic variable being thermodynamically conjugate tc ¢ (i.e.
helowfa:thecmdergﬁrmmﬁer takes different values under identical
physical (external) conditions). In the (T, T) phase diagram the
phase boundary may come to an end. Such an end point (TC, Cc) is
the critical point. At this point the two coexisting phases be-
come more and more similar e.g. the liquid takes on a cloudy appear-—
ance (critical opalescence). Above the critical pbint all dif-
ferences between the two phases disappear. The order parameter
shows a finite jump in the course of a first order phase transi-

tion and this jump describes the amount of difference between



the coexistihg phases. As the temperature is increased along the

coexistence curve the jump goes to zero at the critical point

(second order phase transition).

There are many examples of critical points observed in nature

belonging to very different systems (Tab. 1).

Transition

Order parameter

Ordering field

(symmetry breaking

parameter)
Liquid-gas Density Chem. Potential
P=P. u
Ferromagnetic Magnetization Magnetic Field
M H
Antiferromagnetic Sublattice Alternating
Magnetization Magnetic Field
(non physical)
Ferroelectric Polarization Electric Field
P E
Antiferroelectric Sublattice Alternating
Polarization Electric Field
(non physical)
Phase Separation Concentration Chemical Potential
(Mixtures, Alloys) X=X U=H

Superfluids Expectation of Staggerd Field
Condensate Wave (non physical)
Function
<>
Superconductors Gap Parameter non physical
Ising Model Magnetization Magnetic Field
<g> = M h
Tab. 1

Phase diagrams in general may have a more complicated structure
e.g. for superfluid Helium there is a line of critical points
(A-1line) and atricritical point at which three distinct phases

become identical.

Surprisingly enough it has been observed that many quite differently
looking systems (e.g. different substances, different types of
transitions like liquid-gas, ferromagnetic and antiferromagnetic)
not only show qualitatively similar phenomena but quantita-

tively identical behavior in the critical region (universal



properties); only the names of variables change. It seems that
there are not too many distinct classes (universality classes)
of critical systems characterized by only a few criteria like

dimensionality and symmetry of the ordered state.

Apparently many details of a system undergoing a phase tran-
sition are irrelevant. This observation is the basis for a uni-
fied description of second (or higher) order phase transitions.

We shall limit ourselves considering a restricted class of systems
(models) explaining the main characteristic features of critical
phenomena and neglecting a number of peculiar features of a given
system. So we will ignore quantum effects. Since critical phe-
nomena become apparent on a macroscopic scale it seems to be
justified to treat the problem in terms of continuous classical
variables. Long range interactions will also be neglected,

e.g. the dipolar interactions due to lattice distortions etc..

The idea of universality goes back to Landau who proposed that
all critical behavicr might be described by a mean field theory.
It needed the result of Onsager on the two-dimensional Ising
model to convince theoretical physicists that Landau's‘sugges—
tion could not be generally true; but early experimental re-
sults (dating back to the first decade of this century) if tak-
en seriously would also have lead to this conclusion. Recent
developments towards a theory of critical phenomena give (par-

tial) answers to questions like:

What are the characteristic properties of critical systems and
how do we calculate these? How does universality come about?

Why and when does the mean field approximation fail? How do we
classify critical systems? What are the relevant and what are the
irrelevant features of the characteristics of critical behavior?

etc..

The general method for the study of critical behavior will be
illustrated in detail below, using the example of the ferro-
magnetic Ising model. At the same time this model serves as a
good description of many physical systems near the critical

region.



2. Thermodynamical Quantities in Terms of Local Variables

The Lenz-Ising model we are going to define now may be considered
as a microscopic description of a certain physical system.

In the d-dimensional configuration space a regular lattice Ga
with lattice spacing a is given. To each lattice point x € Ga
there is associated a classical discrete spin O taking the
values *1 (i.e. site spin distribution 6(0;—1)). Each spin
interacts with its nearest neighbor (n.n.) only. Parallel spins
are attractive with energy -K, a spin parallel to an external
field H has energy -H; for antiparallel spins the energy is K

and H. Accordingly the Lenz-Ising Hamiltonian reads

R o) = -k ) OxOy ~ HZGX . (2.1)
n.n.

It associates to each spin configuration {o} a real numberj&jo).

For a finite system with N spins we obtain the thermodynamical

quantities from the partition function

1
Z = J exp-H, ; H=8¢g iB=1rm . (2.2)
N conf. N JL kBT

{o}

In particular we define the free energy density

F

£(k,h) = ﬁﬁ ; Fy = - Inzy ; (k=BK, h=gH) (2.3)

the spin correlation functions

<. > =137 y o e Py
X
conf.
(2.4)
<00 >=12." J o0 e N etc.
X O X O
conf.
and the energy correlation functions
<E_> =250 7§ E, e IN
X X
conf. _ (2.5)
_ _ g - HN .
<EE > = 2 ] EE e etc.



with E_ = ) 0,0y (energy density fluctuation).
Y
|x-y] =a

We always assume that a suitable thermodynamic limit N » «
exists for these quantities (unique for B < Bc). From the free

energy density we define the thermodynamical quantities

M é-%% = <Ox> = <oo> magnetization density
+ 0f _ :
E g = <Ex> = <Eo> energy density
X = - 9%f _ } {<o_0 >-<o0_><0_>} susceptibility (2.6)
8h2 % X O X o)
_ z <5 ¢ >conn
X O
X
. _ 3%f _ ‘s
C=->==) {<E_E > - <E_><E_>} specific heat
akz X X O X O
— X <E E >conn
X 0
X

The second equality ineach case gives the important expression of the
thermodynamic quantity in terms of the local fluctuation variables
O, and EX. Above we have assumed (appropriate for the thermodyna-

mical limit) translation invariance.

We will now enter into qualitative discussion of how to understand
critical behavior of the Ising ferromagnet in terms of spin fluc-

tuations.

Away from the critical point the spin correlation shows

the characteristic Ornstein-Zernike fall of

—IXI/E

conn e

0.0 >~ o = ;x| >> a (2.7)
X 0 |x|d 2

for large distances.

This relation defines the correlation length & which is the fundamental

parameter in the study of second order transitions. The phase



diagram for a ferromagnetic system is depicted in Fig. 2.

H A M [
A -~
LTSNSO
/4 ~ H>o
No stable p—g -\ ™ __
— - state \ _a il
T T e
C \;.\ c T
Fig. 2

Below we will talk about the Ising spin configurations as if they were
snapshots of a dynamically fluctuating system at different times. The typical
configurations considered are those appearing with "large" Gibbs factor exp-H.
For H # o,T arbitrary and for H = o,T > Tc all thermodynamic

quantities are analytic functions of T and H due to the finite

correlation length £which means that the physics takes place in

a finite box of size L > &. By increasing the size of the box
nothing new can be learned about the system; the densities remain
unchanged (independent of L). For H = o,T>Tc the correlation
length £ can be interpreted as the maximal size of islands of spins
pointing in the same direction with fluctuations (subislands) down
to microscopic scale (up-down symmetry) (Fig. 3). The coupling
between spins is weak (for T - »: k - o) and no long range order

is present.

£ AR ESIA AR A e g A A AN A
ﬁ+ IR N 2 A I S R S
Bid 4 v by Vi it YA AR A b4
O R T TR T S N N S A
R NI € S P S A A N MR SRRUDIE SR S SN S
R R 2 I A R P S S S N S G A S
I N N S S S S L N P NS R
+ Y 1‘+ 2 04 ¥4 4 b T5 ',lg PO ‘1“'\,[_}'1‘
_i“".\'f‘ R AN I R S Sl SR SRR RS PNRR S i
SR T A N N P S R e
Fig. 3

For H = o, T < Tc the coupling between spins is strong enough
(for T » o: k » ») to 1line up the spins i.e. a spontaneous

magnetization
<o> = *M(T) ; |M| > o

occurs. The state is no longer uniquely defined as a function

of T. It is an arbitrary mixing of two extremal (pure) states



located on the two branches (H = *0) of the coexistence curve. For
a pure state the probability P(c) for a spin of pointing up or down
is unique. The other pure state then has P'(g) = P(-0). At T = o,

in a pure state all spins point either up or down.

P(g)
A
1 !N+/N
|
N_/N
—_— s -
-1 +1 4]

A first order transition pakes place as H changes sign and the

magnetization of the system jumps from M to -M. This jump disap-
pears as T increases to Tc,the point of second order transition.
This point is necessarily a point of non analyticity as M(H=o;T)

= o for T > Tc but # o for T < T,- For H = o, T < T, the meaning

of the correlation length has changed. Now there is a net magne-

tization say in the z direction and £ has the meaning of maximal

size of clusters of spins pointing in the "wrong" direction again
with subclusters down to microscopic scale (no up-down symmetry!)
(Fig. 4).

I T I R ST N N S S T T S
AAHTE 4 b 4 4 ATV AT 4 4 T 4
L A A A N A
LR S AR IR A SR AR SN T A
S I T A L S S N N
LI S R R 0 T e N ST S
SO N S N S S MR T A0 e S MR Y N S
A N B T N S T S e A A
R G S N S S N N S N S S N N SN
O R 2 N RN I S e

Fig. 4



The formation of clusters of "wrong" phase requires an extra of
free energy to be added to the system proportional to the sur-

face of the cluster

o energy
free energy cost area x (unit area).
The energy per unit volume remains the same in the two phases.
The formation of a cluster due to fluctuations is very unlikely

if the free energy cost is much greater than kBT. Thus

surface area kBT

€ e e
of cluster (922531———)'

unit area

The critical point is characterized by a divergent correlation
length & » © as T -+ Tc' H=o0. If Tc is approached from below

(H = 0) the difference in magnetization of the "right" and the
"wrong" phase approaches zero and together with it the energy

per unit area that determines the cost in free energy for cluster
formation. Now infinite clusters are formed at no energy cost.

This is the region of large scale weak fluctuations in magnet-
ization (Fig. 5).

-

F)

PUEIA A A 4 A 4 A b A TEEETTET L 4oy
I O T T S N N Nt 2t A A SR S R
A A AT L A AT Y Y v Y v Y
O T S N SN N IO T T N R IR R A
U N S N N N S U SRR TN N R SR S
L N N 2 1 N N R TR T N A T
O S I IR 2 2 2R 2R I e 2
BRI N S A A TR R I A S 0 A A R
R S A N R A S
R SR R S S AR SHE SR o NN SRR
Fig. 5

The physics is no longer determined by what is happening in a
finite box. We are faced with a system with infinitely many de-
grees of freedom. In a strict sense ccoperative phenomena only
appear in infinite systems (i.e. thermodynamical limit must always

be performed) (see Fig. 7).
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The Ornstein-Zernike beha?ior of the spin correlation (2.7)
changes discontinuously at the critical point. Roughly speaking
the r.h.s. of equation (2.7) looses its scale & and must hence

take a homogeneous (scaling) form

|x]|
; |x| + o . (2.8)
. ~ const_.
<EXEO> |X|2dE

The weak fall off of correlations over very large distances in
space is the microscopic cause for the non analyticities and
divergences in thermodynamical quantities , e.g. the divergences
of x and C turn out by virtue of (2.6) as divergences of the in-

finite volume sums over weakly decreasing densities.
The singularities may be parametrized in general by power laws
(in degenerate cases logarithms appear instead). This has been

confirmed by model calculations and experiments.

The fundamental divergence of § at the critical point is described

by an exponent v:
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Similarly the other standard exponents are defined (see Fig. 6

and Tab. 2):
o
Ml « 4 ; t > to MI o« tIHl1/6 ; H > %o
H=0 8. t=0
(-t)
(2.10)
x| = A ;i t = %o Cioc i t > fo
H=0 ' H=0 '
- =0
L v L (-0)
M
t=o0
A b
X ! c '
I |
| |
| A
| I'\
' /7 1\
i a N\
| ’ ~
“ [
L I - - . X a———
T T T T
C C
Fig. 6.a
Modcl system « o B v y 8 ] v v
MF ~ | o (discont.y | 0 (discont.) | 3 1 1 3 0. } "
Spherical  {d=3) -1 — ! 2 _ 5 0 1 —
Jsing (d=3) ~b - -4 0-312 125 | 125-131 | =~5 0-03-0-05 | =~063 —
XY (d=3) =~0 (logar.} — — ~1-33 — L — — — -
Heisenberg (d=3) ~—0-1 —_ 20-36 | ~1-40 —_ ~8 0-03-0-04 ~0-71 —
Ising (d=2) 0 (logar.) 0 (logar.) ' 1-75 175 15 025 1 1

Tab. 2. Critical exponents predicted from various models




Experimental plots:
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3. The Block Spin RG-Transformation

3.1. Kadanoff's Block Spin Picture of Critical Behavior

The main difficulty in the quantitative understanding of critical
behavior are the infinitely many degrees of freedom relevant to

this cooperative phenomenon. Fluctuation over an infinite hier-

achy of length scales a < |x| < £ = » must be taken into account.

If one restricts oneself to a discussion of only the typical fea-
tures of a critical system like long range correlations, critical
singularities etc. one might expect to be able to simplify the
problem by disregarding a lot of details. The main observation

is that close to the critical point we expect the spins to be
"strongly" correlated over large distances, i.e. because of the
extension to infinity of up and down clusters of spins the pro-
bability of finding, for a given spin, spins pointing in the same
direction is large over large distances. For a description of the
characteristic critical long range behavior then it suffices to
consider the critical system as consisting of "large" blocks of
spins which (as site spins are strongly correlated within blocks)
essentially behave as one big spin. The interaction among the
block spins is expected (at criticality) to be again of the near-
est . neighbor Ising form. By forming block spins one "simplifies"
the system as one eliminates a large number of degrees of free-
dom expected to be irrelevant at the critical point. This is

the basic idea suggesting to study critical behavior by inves-
tigation of renormalization groups (RG). The block spin RG ex-
presses the effective block spin Hamiltonian in terms of the
original site spin Hamiltonian. Before we give a precise defini-
tion of the RG let us briefly discuss some of the essential steps

involved:

We subdivide the "microscopic" system of site spins with cell

size ad into cells of size Ld with L=2"a (n=positive integer)



and form block spins

On = ) o, -
X x€cell§

For exactly lined. up spins

A
On = ian .
X

If we form larger and larger blocks the block spins do not
stay bounded

N
OA 2> + o (n » o).
X

In order to get bounded block spin variables one must renormalize
the o

such' that

On = Z SA + *1 (n » o) (3.0)
b4



For exactly aligned spins

7 = o~nd _ (L/a)_d
would be the appropriate renormalization. However, (and this is
the crucial point) there are fluctuations within the cells such
that the spins are not exactly 1lined up (this would be likely
only for small T and then not with up and down symmetry). Thus

Zn must be somewhat larger. We set

g = 270X o (B/g)7X

n ; 0 < x < d

where X is an unknown parameter (critical exponent) to be deter-

mined from the condition (3.0).

The renormalized block spins are spins on a regular lattice with
spacing a' = 2"a and for larger and larger blocks the lattice
spacing does not stay finite. In order to have the block spins on
a finite lattice (with spacing a) also as n + « one has to dilate

(shrink) the system (scale transformation)

Thus to the site spin we have related a block spin system on the
same lattice (Fig. 8).

i '~ s e =y
i - e I [ * !
! | [
| [
[ L . . I n =
b~ =¥ = 7
T T xox
| | | = ‘ﬂ l ‘ = =2
[ A e . LI . ) % I =
,_X} —~ e o~ — — } b4 X x'
H(og) H'(o")
elimination renormalization dilatation
Fig. 8

The relation between the Hamiltonians of the two systems is given
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by the renormalization group transformation

n X = 2% oL o0 (n—5e=0)

In the region |x| » L for % >> L > a we expect the two Hamiltonians

to give an equivalent description of the system i.e.
H' (c') = H(o)

In particular at the critical point £ = « Correlations over

distances

|x] > L >> a

should be independent of the cell size L i.e.

. ' . *
Hcrlt'(o) ~ H cr1t.(0,) ~ H

*

and thus the long range asymptote may be calculated from an L-inde-
pendent fixed point Hamiltonian.

The transformation Rn thus must have a fixed point

* *
H = Rn H ; n arbitrary.

The characteristic features of an order phase transitions are
thus described by a fixed point Hamiltonian. The renormalization

%
group is the essential tool to construct H e.g. by iteration

of R1:

By using this iterative scheme it becomes possible to run through
the whole infinite hierarchy of fluctuations. At each step only

a finite number of degrees of freedom must be taken into account.
X le. Wt Coaw aboul: Me VNVLwVLo ot Ve SN ASVRLEN ‘
opfleen Mls> 5 =5 Wl =5 o e e M e
1) %\Mot}x»(\»v \—-\A}\.\,\S QVL\__—-§oD
l\ C,\/'\f\ﬂ‘tﬁv\l(\v& C‘b —y =0
1) Lowg dflomce WASS o

K Vowa Aol ouce (I vo OV par '&( O \MQ/\ ‘



3.2. Definition of the Block Spin RG

The precise definition of the RG transformation includes the
block spin transformation, renormalization of spins, dilatation
of the system and elimination of the fluctuations within cells.
For a finite system with N site spins we always enlarge the

nd N site spins in order to end up with N

system first to N' = 2
block spins. This step is trivial as we will always be interested

in the thermodynamical limit N > « only.

Definition of Rn:

A. Enlargement of the system

N > N' = 24 g

B. Block spin transformation

On = ) O, (3.1)

X€E (X, n)

where we subdivided the system into cells

(x,n) = {x; %. <x. <3x, +2"a i=1,...,4}

D. Elimination of irrelevant degrees of freedom:

The partition function

Zo, = ) exp - H_, (o)
NY (G N
= ) ! exp - H_, (0) (3.3)
{c'} {0} N

1
exp - Hy (c")

It
~1

{o"}
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may be calculated as indicated by first sum over all confi-
gurations {o}' with fixed block spin configuration {o'} then
sum over the block spin configurations {o'}. What is summed
over in the second step must be the exp - Hé(o') where Hﬁ(c')

is the effective Hamiltonian of the N block spins. Thus

exp - H_ (¢") = ) exp - Hy (0) (3.4)

N {o}®
defines the block spin Hamiltonian H&(o') in terms of the site

spin Hamiltonian HN(O) by averaging over the cell fluctuations

{o}".

E. Dilatation of the system: & = 20% i.e.

o', =277 7§ n o, - (3.5)
XE(2Vx"',n)

The transformations A to E define the block spin renormalization

group transformation

Hy(o') = R H(o) = - 1n ) exp - H_, (o). (3.6)

{o} N’

The RG transformation defines a one parameter semi-group (group

composition law without inverses)

(3.7)

Below we therefore only have to study R,. Rn follows by iteration.

In quite general systems the Hamiltonian is characterized by

a set of parameters

H(o) = =) Ko
ACG,

A (3.8)



with A a subset of lattice points including the empty set ¢
(constant term in H). On denotes a product of spins at different

lattice points of a set A i.e.

oa = 11 94

i€A
Examples:
Oioj n.n. interaction
i J
. j
//// oioj n.n.n. interaction
i
4 13
o, O, O, O, four spin interaction
i CiLTiLTi
: ' 1 72 73 74
1 2
etc..

The index o denotes the type of coupling i.e. a is characterized

by the set of subsets A having the same coupling

= ! - =
o {a' ; Ka Ka}

Example: isotropic n.n. interaction

In general the transformed Hamiltonian H'(o') can be written in

the same way as H(o),i.e.

H'(c') = —Z K' o (3.9)
ACGa a A



so that the RG transformation can be written as a matrix-

transformation in the parameter space characterizing the system:

(K) K . (3.10)

K& B

= RaB
This is in general a tremendously complicated non linear transfor-
mation. This is the prize we have to pay. By elimination of irre-
levant degrees of freedom we have obtained a system with less
degrees of freedom but with a much more complicated Hamiltonian
e.g. if H(o) is a n.n. ferromagnetic Ising Hamiltonian H' (c')
will no 1longer be of the n.n. Ising form. The RG transformation
generates all sorts of couplings that are compatible with the
symmetries of the system. However it will turn out that near the
critical point H'(c') can be "controlled", i.e. H'(c') will be
essentially of the n.n. Ising form. This fact makes the RG a

useful concept for the study of critical behavior.

The explicit discussion of the RG in concrete examples is com-
plicated. Before we go into these model calculations we will
discuss in general the implications of the RG transformation

for the critical behavior.
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3.3. How to use the RG

By our definition of the RG the partition function of the 2nd N

site spins may be calculated from the N block spins:
Zyond (K) = ZL(K') . (3.11)

The free energy densities

1 . .
£ (R) = - In 2 (K) (site spin system)
N2nd N2nd N2nd
T ] —_ - l 1 ] .
£ N(K ) = N In ZN (K") (block spin system)
are related by
-nd
£ (k) = 277% £ (K")
N2nd N
or in the infinite volume limit
— -nd ' 1
£f(K) = 2 f' (K') . (3.12)
For the correlation functions
<Oy veeno > T O «ree0, eTHO) (gite spin system)
1 m {o} 1 m
2
1 1 ¥ | 171 1
O 4eee0_y > = ). O ,....0_, € H' (0" (h10ck spin system)
X X . X X
1 m {o'} 1 ™
R

we have a somewhat complicated relation. mindicates division by 2.

Using the relation between site spin and block spin variables

o, =2 %% ¥ o (3.13)

we may write
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) Gaad b E s e ) < °x1"""' o, g
1 [}
x1€(2 x1,n) xm€(2 xm,n)
D N 5 Oy wemnenn o, e~H(9)
{o} x4 X 1 m
= (3.14)
1 ' ~17! ]
= X ) CHPRP T1 € H' (o)
{0} 1 m
]
nmx ! !
= 2 < Ogneverces Oyt > groo-
1 m
At the critical point we expect }. o, = 2" n
]
x€(2nx',n) 2°x
i.e.
' —
Opr = 2n(d x) o .
2°x!'
and hence (3.14) takes the simpler form
n,m(x-4d) ! '
< 0 ceeens o > ~ (27) < O qesesesl_ 4 >,
ZnXa 2nxﬁ Kc %9 *n K c
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4. Behavior at the Critical Point; Scaling

What are the characteristic properties of the critical corre-
lation functions? We consider the correlation functions in the
infinite volume limit N + . For a system with large correlation
length we expect the block spin system to be essentially indepen-

dent of the size of blocks L provided
a << L << g
i.e. the blocks are so large that the memory on the lattice

(short distance behavior) is lost but they are still small

compared to the correlation length. Then

g (ntm) (R1)m g(n) . (R1)n g = g™
if a << 2Ma < 2n+ma << g. Similarly if m << n we expect
0)({r'1+m) = o~MX I o (n) _ o ~TX 2md 0(n)

m X 2mx'
XE(2 x',m)

(n)

because the large block spins o may be considered to be exactly

lined . up within small blocks (factor Zmd). Notice that the re-
normalization (factor 2—mx) must be chosen independent of the
block size in case of very large blocks. Fluctuations in general
make x < d. Hence we expect for

n n+m
a << 27a < 2 a << g ; m << n

1. g0 . g(n)
(4.1)
2. 0(n+m) N 2m(d—x)0(n)
x m
2'x
and if
n+m
27 Ta < |Mx| << & ; Ax,. = x, - X.
1] 1 J
<oin+m)....cin+m) > (nim) o (d=x)p <0(;) c.om oy (n)
1 p g o 2"x 2““xp g
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At the critical point § = « i.e. K = Kc n may be chosen under

the conditions above as large as we want i.e.

lim B = 3in kO™ 8 - 1im (™
C 1 C C
n n n
This. means .

* *
1. R1 has a fixed point: R1H = H

(4.3)
*

(n) _ (n)
2. Hc = (R1) Hc ~+ H .

The existence of a an order phase transition is equivalent to

*
the existence of a fixed point Hamiltonian H for the RG-trans-
formation. The fixed point Hamiltonian is obtained from the cri-

tical Hamiltonian by iteration of the RG-transformation.

In parameter space (4.3) reads

* * *
1. R1(K ) XK =K
(4.4)

%k
2. k'™ - RMk ) » k.
C 1Y ¢

If R, is given we can (in principle) determine the fixed points

1
%*
K and the critical values of K for which the sequence Kén)con—

E 3
verges to K

%
By the condition |Ax| > 2"a we can determine from H the long

range asymptote of the correlation functions. So we can indeed

determine the characteristic critical long range behavior from

a (simple) fixed point Hamiltonian.

The parameter x defined in (3.5) has to be determined such that

the two point correlation is nonsingular.

(n) O(n)>

N 5 < o, (4.5)

0o < lim <o
I—>co

We then expect the limits

(n) (n)y, _ 4" *
COg Teeen0 > =<0 a0 >y (4.6)
1 P 1

lim
n-—owo



- 24 -

to exist. From equation (4.2) it follows that setting 2™ " = k for

n - oo

* X4 x X
<g (E_)""'O (EE)> "

_ K(d—X)P<0*(x1)....0*(x )> - (4.7)
X P

K

This is the scaling formula for the long range tails of the
correlation functions. These fixed point correlation functions

are homogeneous under dilatation of the system.

Thus at the critical point the long range asymptotes of corre-
lation functions coincide with the fixed point scaling func-

tions i.e. for x; # X (i # 3)

By comparing our result for the two point function with (2.8)

cst.
cotx) ale)>y = maay
| x| "0
polx] > e
- * *
<o(x) o(o)>, = k29 <" (kx) o (0)>,
choosing k such that k|x| = 1 we have

* *
<o (1)o (0)>,

|Xl2(d_X) !

<o(x) o(o)>_ = |x| + (4.9)

AL, . 4=2 n
thus dO = d-x = 5 + 5 - (4.10)

The part d-2 is called canonical part (Gaussian, mean field) of

2
the dimension of o. %

dimension. do is called dynamical dimension of o. So we have

is the anomalous (nontrivial) part of the

found the relation between the conventional critical exponent n

and our renormalization exponent x

— ; n=4+ 2 - 2x. (4.11)
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5. Behavioxr . in a Neighborhood of the Critical Point

We will now briefly consider the implications of fixed point
properties for the approach to criticality. We will make some
plausible assumptions that we will have to prove in model cal-
culations. We consider a system with a critical point and assume

*
the limit (R?)Hc + H to exist.

i i ! SO
i) We assume there exists a complete set of operators\oa
that at least in a neighborhood of the critical point the

Hamiltonian can be written in the form

w=8 +]n 0 +om?
o (5.1)

h = f *_ *+ *2)
o = £, (K-K') =K - K + O((K K ) .

ii) We assume that the RG-transformation can be linearized

*
about H, i.e.

_ ¥ 2
R,H = H +§.ha T1Oa+0(h) (5.2)

where T, is a linear operator.

1

iii) We assume T1 can be diagonalized i.e. there exist eigen-

%k
operators C)a and eigenvalues Aa such that
* *
iz {
T1Oa Ay Qa. (5.3)
Then
Lk - * 2
R\H = H +§ha A, U, + 09
(5.4)
* = N ¥ 2
= 1
H +§hu0a+0(h,) :

In general the eigenvalues will tuin out to be real and positive. Often they

are degenerate but we will not consider this case here.
By the semi-group property

(n,+n,) (n,) (n.,)
17720 1, 2
Aa = Aa xa (5.5a)
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(n)

this implies that Xa

must have the form

ny
A S (5.5b)
o
Now we are able to get a clearer picture of what means
"universality" or "the effective Hamiltonian becomes simple at

criticality" etc..

By using (5.4) the parameters Eu transfor under the RG-trans-
formation near the fixed point as

o jf Y, > 0

=(n) _ ¢ . . _
ha = h 2 »~ 4 2 if Y, = © (5.6)

Lo if Y, < ©

(if Y complex use Reya for classification).

%
Accordingly the operators(o and their conjugate parameters h
gly o o

are classified as
y > 0 relevant

O marginal

W
Il

Y, < 0o irrelevant.
The marginal case in general deserves refined investigations.
The system is critical,if the relevant parameters are zero
(Ha = o if ya > 0). These are the parameters that we have to
adjust in experiments in order to observe thephase transition.
A reasonable physical system exhibiting critical behavior should

have only few relevant variables. If in a system marginal vari-

ables are absent

has a unique fixed point and there are no parameters left in the

system. In particular all irrelevant variables (in general «~-many)
do not affect the critical behavior! We say the system exhibits

universality (Kadanoff). In case there is a persistent marginal
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variable the fixed point is not unique (e.g. one parameter fa-
mily of fixed points) and some of the critical exponents y, are
not either: Critical behavior in this case depends on the initial system
Hc and universality in its strict sense is violated although again
the limit does not depend on w=-many irrelevant details.

The transformation of the free energy density and the correlation

functions in the neighborhcod of the critical point then takes the

form: (transformed system: length xk, parameters h K—y“,
(d-x) *
field o k'¢7%
= L +a = -y
f{ha} = K f{haK a} (5.7)
A ~ P (d-x) 5o Yo
<0(x1)....0(xp)>{ha} = K <0(X1K)....0(XPK)>{haK }(5.8)

Such a transformation law we call Kadanoff scaling law. It is

a homogeneous substitution law,i.e. it expresses the invariance

under simultaneous substitutions:

X - KX

£ - 9f

(5.9)
g (d=x)

ha > K h,

By (5.7) the singularities of thermodynamical quantities are
associated to the presence or vanishing of the relevant vari-
ables. All critical exponents defined in (2.10) can be read off
from (5.7) and are given by the Y, > ©- Corrections to the laws

(5.7) and (5.8) will be discussed later on.
V\)QQR\A,LV XAM vVvL\r oaLuceJ V\r\j&c& SCQ&W:\ \R/QA’D

by = S Cap - w53

- Pwkyi-kfjéyc-\c‘)ﬁ*---- (5 10

V\)h;l\ /era»\"\ro/i ‘_}’
};:”:_]L‘L Q&“d

MA VAR %a%—e\k ALQLO A \a@vamé\—u O\(JC"-Q‘Q : ‘_\\-\—2_
&A«vao\/%'\n@ S{mwfj (SQ‘ ) PO\ QS%\ Y SPION QS—QCe\_A_LL—
equatibios ol Lird e Mo vegion A
Q/GWUMWLL v’?, k‘g Ao 0



6. Critical Behavior of the Ising Model

The general structure discussed above will be illustrated now

for the Ising Hamiltonian:

H= -k z.oioj -hjo, -k, 1} 0,04 ~k, ) 0,040, 0 * -
n.n n.n n.n

=-k_ Y o.,0. -(k-k) §J o.0. =-hYo. =k, ) o.0. - ...
®hin € n.ntH . 1n.n.n 1) (6.1)

Il

H, -(k-k_) OE - h@o ;

There are two relevant operators (fluctuation variables)

0. = ) o,0.
E n.n i j enerqgy
(6.2)

00 = Z-Oi magnetization

and correspondingly two relevant exponents Yg and Yge There is
no marginal operator, i.e. there is a unique H* so that the

critical Hamiltonian is
* .
Hc = H + irrelevant terms.

Accordingly critical behavior of the Ising system is universal
i.e. it does not depend particularly on the next nearest neighbor
(n.n.n), the four spin,and more complicated interactions. (Remark:
A model showing up a persistent marginal variable is the Baxter
model in field theory the Thirring model.) In Fig. 9 we depict
some trajectories of Ising Hamiltonians under the action of the

RG in the subspace h = o, ki = 0; iz 2.
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~

critical

subspace

k =k (k) T<T L
cjc 1 [

X -

In the following we ignore the irrelevant variables.
The singular part of the free energy density transforms as follows:

d - - T_Tc
f£(t,h) = % £(t YE, he Y0) ; t = ) (6.3)

To

Thus the equation of state reads

Mm=29f o (I vedE (VB qy . (6.4)
9 oh

If we choose k such that

|t] K YE = 1 (e.g. k = |t|1/yE)

we have on the coexistence curve h = o:

a-y

M(t,h = o) = |t]

(6.5)
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Equation (6.3) actually shows that Kadanoff's idea that critical
behavior might be calculated from noncritical properties has

a precise meaning. In the expression

M(t,h=0) = (%—-—)B M(to,o) : tO as reference temperature,
o

we see that the critical singularity is isolated in the singular
factor (t/to)B whereas M(to,o) is the magnetization in a noncri-
tical system, "~ which is analytic in the parameter space (t,h)
referring to a system with a finite number of degrees of freedom.
This fact represents the crutial point making scaling laws like
(6.5) useful.

On the critical isotherm t = o we have, with k chosen according
to

|h|k ™Yo =1

¥y

M(o,h) = |n| *9 M(0,41) = sign(h) |h|'/® const. . (6.6)
(h >~ $0)

Thus

B = d;zc’ , 71 - d;zc’ . (6.7)
On the other hand (5.8)

<o>(t,h) = Kd_x<0>(tK_YE, hk Y0)
compared with (6.4) implies

X =y, - (6.8)
The susceptibility

X = x(t,h) =7 <o 0>° (|x]|,t,h) (6.9)

X
= K2d_y0K—d Z<0 0>C(|x|,tK—yE,hK_y°)

X
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behaves as

d-2y0 t Yconst.
x(t,0) = |t]| Yp x(x1,0) = t > %o
(-t) Y const.
thus
2y0—d
Y =Y'= Vg .

The specific heat

C = C(t,h)

It

Y <EE>C (|x]|,t,h)
L

= KZd—yE K_d Z,<EE>C (|xl,tK_yE,hK—yE)

X
behaves as
d-2yp t~% const.
Yg
C(t,0) = |t C(x1,0) = it~
_y !
1 (-t) %" const.
and 2y -d
— E
o =o' = .
Yg

The correlation length & is defined by

“|x1/,

e
<go>C= ——g-3~ const., for |x| >> a.

(6.10)

(6.11)

(6.12)

(6.13a)

An alternative definition that for large & coincides with the

one above is

52 =) x> <go>Cy ) <co>€
X X

(6.13Db)
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From . Z(d-yo) . y -y
- <go>" (|x],t,h) =« <og>" (|x|x,tx YE,hx ¥9) (6.14)

we have for t > o, h = o

-2/y
2 E 2 o]
£E€ = t Y x° <00>" (|x|,1,0,) / ) <565 (1x],1,0) (6.15)
X X
o t_zvconst. (t > o)

so the exponent v is
v = 1/yE 4 (6.16)

As a result we make the following observations (to the extent we
are able to show that the Ising Hamiltonian has a unique fixed

point and there are only two (nontrivial) relevant operators):

- All critical indices a, B, Y, 6, Vv, n are determined by Yg

and Y i.e. they are related by scaling sum rules

B(6=1) = 28 + v = 2-a
- Near criticality the singular part of the free energy density
scales
- At criticality the system is described by a set of homogeneous
(dilatation invariant) correlation functions and two exponents
Y and Y
- The approach to criticality is completely governed by the cri-

tical system (i.e. by two exponents Yg o Yo)'
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7. Summary of Important Formulae:

1. Ising Hamiltonian

H=H, - (k=k )0 -0 O, i xk_ =t =5

Relevant operators

OE = ). 0.0, "energy" (even)
n.n (7.1)

"magnetization" (odd)

1l
~
Q
o

0g

2. Critical Hamiltonian

H = -k @ + irrelevant terms
c c E

(7.2)

3. Action of Rn near the critical point

A (7.3)
E+ kY

-X

g (@=X)y

(with y = Y i X = yo)

4. Scaling laws:

a) free energy density (singular part)

£(t,h) = 3£ (Y, he %) (7.4)
b) equation of state: h = h(t,M)

h(e,M) = kK X hite Y , me(d7%), (7.5)



c) spin correlation
<oo> (|x|,t,h)

d). energy correlation

<EE> (|x|,t,h) = «2(@7Y)

Critical exponents

O
M(t,0) = §
(-t) P
M(o,h) « n /8
-y
x (t,0) «{ t
-0)" Y
-0
C(t,0) « { t
C(-t)"°
Y = Y' T zx;d I o =
t—V
g « i e
(-t) "
v = ! = % (Y = v_1

Critical correlations

<o0>(|x|,0,0) = SQE%%;
|x] =79

] . const.
<EE>(IXI,0,0) o _—26._]3

| x|

_ 2(@-x)
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;le—)oo

<o0> (k|x|,tc Y, hk

<EE> (k| x|tk ¥, hk

-x,

-X

)

(7.6)

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)



_a-2 , e . . _ _
d =%+ 5> =d-x ; n_ = d+2-2x
N (7.13)
= 872 | E _ 4 - 4-
d, = 25> + 5= =d-y ; ng = 4-2y
7. Scaling sum rules:
o= o' Yy = y' v =v'
B(6-1) = 28 +y = 2~0
(7.14)
2-a = dv
- B Il
d5 = 3 ! dg v

Equivalent forms of scaling formulae are easily derived e.gq.

4. a) free energy density (singular part)

£(t,h) = |t|2 % (21, ?_TK) ; (7.15)
t

A =B+ Yy gap exponent

4. b) equation of state

h(t,M) _ t
& - Bl

, 1) (7.16)
M m'/B

A remark concerning scaling:
Scaling formulae have been tested by experiments e.g. we may

write the equation of state as

h o _ o, (M
mle|Y

Scaling means that the function w, is a function of M|t|_B only!
The data for CrBr3 are shown in Fig. 10. The magnetization M
measured as a function of temperature and magnetic field is plot-
ted in the variables M/|t|6 and h/M|t|Y. 1If scaling (homogeneity)

did not hold the data points would be scattered in the whole plot.



Since the data follow the homogeneity assumption, they lie on

two lines corresponding to the hehavior above and below Tc'

r [(TTTTT T T 7T | LA T S
_ CrBry T =32.844°%K -
.o 7 = 1.2i5

. B =0.368
IGO0 |— e =
- ° LA 3
- . * 32.852°K &1
B ° = 32.872 N
: 1 32.926
- " s 32,981 -
’ v 33.034
@, + 33,142 s
" 33,739
_bh . 0 35029
M|t Yy BOF o =
o :
: By ]
4
: N i
| T<T. \‘ =
© 32.840°K % '
° 32822 4 (L
b 03278 Y RIRIVN
- e« 32.732 M ©%9 o= o]
v 32721 1 -
T+ 32709 =
I~ 32676 t
+ 32,655 1 7
- » 32594 ¢ =
+ 32,551
-+ 32.496 % =
v 32.469 r
oy 1 of I N GO OO NN 1 5 O |
10 0l

Fig.10 This plot of h/(M|t|Y) against M/[tIB confirms the scaling
hypothesis for CrBrj. The two branches are for T>'I‘c and T<Tc‘ After
*J.T. Ho and J.D. Litster, J. Appl. Phys. 40, 1270 (1969)

The validity of scaling sum rules for various models can be

checked looking at the numerical values for critical exponents
given in Tab. 2.

A remark concerning universality:

The Ising exponents are numbers depending only on the dimensions

of the system. There are only two independent exponents and they do
not depend on any details of a ferromagnetic Ising system pro-
vided it has short range interaction (there is no proof of these

statements; however,as far as model calculations have been done
this picture is confirmed).

Physical universality says that different physical systems (like
ferromagnetic and liquid-gas systems) have identical critical

-behavior (critical exponents) only the names of variables change



(see Table 1). The fact that one indeed finds different physical systems

with the same critical exponents can be

seen from Table 3.

System a B ] Y 8 v n

CO2 O.352i0.008: 1.22%0.01 4.47+0.12

Xe 0.04-0.06 : 0.351+0.07 E 1.232+0.02 4.610.1

H: 0.04-0.11 | 0.35540.009 1.2240.002 | 4.44%0.16

N, 0.374+0.016| 1.35%0.02 | 4.45%0.1

Ga 0.370+0.01 1.33 4.39%0.1

CrBr, 0.368 1.215 4.3

M, 0.3350.01 1.27 0.63 0.05

fluids 5 0.35+0.01 | 1.21%0.05

ferrom. ? 0.37+0.01

binary O.342i0.016i

fluids |

Ising (d=3) 0.13 0.312 1.25 &5 ' =0.63 | 0.03-0.05

Heisenberg 5 -0.1 | ~0.36 =1, 38 =5 t=0.71 i0.03—0.04
(a=3) _ ] e - ] o

Tab. 3

The physical universality can be understood to some extent (at
least intuitively) from our general discussion and from model

calculations.

For theoretical physicists it is an exciting observation that within
one universality class of critical theories one can find very
differently looking physical model theories. It is either expected
or "proved" that e.g. within the classes of gquantum spin systems
ferromagnetic and antiferromagnetic classical spin systems (and
equivalent models), Euclidean field theory models (with or without
cut-off) relavistic field theories (bare or renormalized) con-
formal invariant field theories and probabilistic models there
are corresponding subclasses having identical critical long range
This "fact"
)

behaviopx in that one does not investigate the model at hand but >

behavior. is frequently used in the study of critical

some equivalent model which is simpler or for which more ad-

vanced techniques are availakble.



Part II: Renormalization Groups for Lattice Systems

8. The RG for the Two Dimensional Triangular Ising Model

The study of the block spin RG in two dimensional Ising like
systems provides an important test of the ideas developed in

part I of these lectures.

The planar triangular Ising model is defined as follows: the

plane is covered by regular triangles of side a. To every point

of the triangular lattice there is assigned a site spin S; = 1.
To every configuration {s} of site spins there is associated an
energy H(s). The Hamiltonian may be of n.n. type or more generally

have any isotropic ferromagnetic short ranged form.

The RG for this model was studied by Niemeyer-van Leeuwen. We
closely follow their treatment. The peculiar feature of this model
is that one can perform a block spin transformation with an odd
(and small) number of spins. As we will see this makes life much
easier as compared to the square lattice system. We now define
the RG for this system. Block spins are formed as depicted in

Fig. 11.
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The site spin index is i the cell spin index i'. Sy is the site

spin and si, denotes the cell spin. Inside a cell the site spins

are labeled . as sl. si, si.. The renormalized cell spin can be
defined by
. 1 2 3
si, = sign (sil t sy + si.) 5 (8.1)

This transformation is unique because of the odd number of site
spins within a cell. For a given si, the site spins sl,, si,, si,

can assume four different configurations. They may be labeled

by a fluctuation variable 0,4 as follows:

1 2 3
. S. S5 .
O i! it Sit
(o} s!, s!, s!,
i i i
1 —si, s!, si,
(8.2)
2 si. —si, si.
3 si, si. -si,

The site spin configurations {si} are thus alternatively speci-

fied by {si,,ci.}.

The RG-transformation is then defined by

exp - H'(s') = ) exp - H(s',0). (8.3)
{o}

We write the site spin Hamiltonian in the form

H(s) = - ) K S, ; S, = S, (8.4)
A & A IEA 1

Analogously the cell spin Hamiltonian may be decomposed as

H'(s') = - ;'K& SA 5 ' (8.5)
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Here A c Ga and A'c Ga/§ are subsets on the lattices. o de-
notes the type of interaction as: constant, nearest neighbor,
next nearest neighbor, threespin, etc.. We assume the interactions

to be isotropic, ferromagnetic and short ranged.

We now define a simple perturbation expansion for the calculation

of the RG-transformation
] _— > 1
Ka = ha(K) " (8.6)

(An exact evaluation of this transformation is more complicated
than the solution of the Ising model due to the appearance of

arbitrary types of interactions.)

The perturbation expansion is based on a separation of H into

a part Ho which can be handled exactly and a remainder V:
H=H + V. (8.7)

We then define averages < 5 with respect to the Hamiltonian
Ho by:
-H (s',0)
o
<A> = )} A(s',0) e / -H (s',0) . (8.8)
o o
{o} 1 e

{o}

The RG-transformation (8.3) can now be written in the form

' -H (s',o0) -H (s',0)
- (gl I _ 1 4
e H (sT) {g} e © - ) e Vis',o) o "o /. -H (s',0)
{0} e
{o}
(8.9)
-H
=: { Z e O) <e_V>
{o} ©
We will use the cumulant expansion
ln <e V> = E (=7 <vs>€ (8.10)
o} o n! o '
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with

<v>C = <v>
o o

(8.10a)

2_.c _ 2. _ 2
V>0 = <VTY - <V >
etc..

The perturbation expansion for H'(s') takes the form
-H o n

—Ty ! v — o (-1) n_c
H'(s') =1n (J e ) + nzo S <Vo (8.11)

The main problem is a manageable and physically reasonable choice

for HO and V. A natural choice is

H  contains all intra cell interactions

V contains all inter cell interactions.

We then easily evaluate

3
-H, = - Zl H ;v = K Zi (s;4 sj+ + 874 s74 + 87, sl,)
1 1
(8.12)
=K ) (46 -1)
it 9ir0©

with K the n.n. interaction in H(s). Notice that Ho only depends
on o. Thus the first factor in (8.9) is
—Ho(o) -Hoi.(O)

N
. e = e = (z.)
0 112 o

(8.13)

where
Z = e + 3 e (8.14)

and N the number of blocks of the finite system.
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The 1St order approximation

Zero external field

We calculate the first order term in V in the expansion (8.11)
We will assume first that H(s) has n.n. interactions only. A
typical interaction between two adjacent cells i' and j' (Fig.
12) is given by

o 2 3 1
Viysy = K(si, + si,)sj, (8.15)

llJl

1

Fig. 12

For the calculation of expectation values of Vi'j' we need

the averages

K(4¢8 -1)
-1 o 0,0
= ' (03 = ! ’
£, = s}<sti>g Z, Si. {g} siv
= z;1 s!, s!,(e3K+e_K)= 2_1(e3K+e_K) a=1,2,3
K46 -1)
f., = <s., sB,> = 7! y os%, SB, e 9.0 (8.16)
2 O O {o_} 1 1
= z;1 ( 3K o e % a#B=1,2,3
K(4§ -1)
f3 = g!,<s.,8 ls:.)’,> = Z ! s!, S.,S:,8:, € O
i'“o o (53
= 2] st,s ,(e3K—3e_K)= 21 (3K - 37Ky
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Withthese expressions we find for the n.n. cells

- _ 2 3 ' = g2 ' '
<Vi,j.>O = =K <si,+ si.>o <sj,>O = 2f1 K Siv Sj' (8.17)
and hence
2
V> = SRV, a,> = =2f0 K s!, s! 8 (8.17a
o <i§l:jl> lljl o 1 <iZjl> l' Jl )

To first order the cell spin Hamiltonian (8.11) then reads:

2
H'(s') = -f' - Y K's!, s!, =-N1lnz_ - 2f5f K }. s!, s!
© <i'j'> it 3! o 1 <iljs>ll 3!
(8.18)

and the RG-transformation in this approximation is

f' = N 1ln z
o o
(8.19)

K'=2ff1< .

Note that in this first approximation the block spin Hamil-

tonian is again of n.n. form.

Non zero external field

In the presence of an external magnetic field we have to

consider the replacement
vovg+nlg Os=§51 (8.20)

with Ve the even n.n. potential considered above. In the

cumulant expansion

(o}
<V> = <V > + h< >
(0] e o kDs

2 N V20 N2
<V <(vg + h\DS) >, = <V, + hle>O (8.21)

Il

Il

2 2 '
(V>o = <V2g) + 2h(<Ve®s>o - <Ve>o<(gs>o)

+

2 i 2 3 2
h (<OS > <\Os>o)
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To first order in h thus

_ c 1 _,2_¢ g - - - .
<y>0 + 5<VE> 04 Lol = =<V > -hl< ®S>o (<ve(OS>o <Ve>o<(Ds>o)]+.

C
-< > -h< > < > + cein
Veo h OSO-l-hVeq)SO

(8.22)
We evaluate:
= 1 - '
< L!)s>o B Z'<s v PS5t 850, =3 6y Z. Si
i i
c _ 1,2 3 _ 1,2 .3
<Vé(Ds>o = %F <iEj'£<vi,j.(sl,+sl,sl,)>O <Vifj‘>o<sl'+sl'+sl‘>o}
_ 2 ,.3 .1 1,2 .3 2 .30 .
= -K %1 <izjf§(si.+si.)sj, (5, ¥8]u #8740 > =< (8], ¥874)84,> < >}
= . ]
3 £,4Ka Z‘ s} (8.23)
i
with a =1 + 2f, - 3f°
2 17
The only contributions come from 1' = i' or j' i.e.
2 3 1 2 3 1 1

) {<(si,+si‘)(sl,+si

2 3
+ S. . R .
<i'j'> ' Si')>0<sj'>0+<si'+si'>0<gj'(SJ'+SJ'+SJ')5

o2 3 1 2 3 1 2 3 1 1 2 3
<si,+si,>o<si,+si,+si,>o<sj,>O <si'+si'>o<sj'>o<sj'+sj'+sj'>o}

= Z. {<s?,s 126 <S> * <syy s> <S;'>o + .e
<i'j'>
1 2 2
+ <8y > <s., sj,> t <s[,> <s., Sj' o+ ..
1
-<8y,> <s,,> <s.,> =< > < > < = e
lI 1 SJ‘ Sll fo) S 1 S I>O
1 2 1 2

‘<Si.> <s},>

(0]

<g§,,> = <g,,> <g.,> <gT.> -—=-...
© "j' o i'"o Sj' o s]' o} }
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= £f.f o+ £. s, + ..
<12j'>{ 172 55 173!
+ f1 si. + f1f2 s!, + ..
_ 3 P
f1 sj, f1 Sj' -
_ &3 _ 3 o
f1 si. f1 s!, —_ }

3 3 3 3
= 3 E. sty {6, + £+ .. + £, + £.£, + ... £ - £ omEy-E
= 3.2(2f, + 4f £ - 6£3) § s!

1 172 1 I !
by symmetry in i' and j' and as each cell has 3 n.n. cells in a
half plane.
Thus the additional term AH'(s') is again linear (single site -~
single cell) and according to (8.11)
= — . . ! .

AH'(s') = - h' E;Si' 3f, (1+4Ka)h g' s (8.24)
or

h' = 3f1(1+4Ka)h § (8.25)

2. The an order approximation

We consider only the case with zero external field. We have to

evaluate

2_c 2 2
< = -
v >o <V >o <V>o

The n.n. contribution is given by

. . <(V,,., = <V, ,.,> v - <V > )>
<i'j'><k',1'> ( D ey k1170 %0

with Vi'j' from (8.15). Terms contribute only when <i'j'> and



...46._
< k',1'> have cells in common since otherwise

<V = <V >

it Vkr1+7o i'3"70 Vx'1170

A constant contribution arises from the case <i',j'>

2 o] 2 2 3,2 1,2
. = . - < 3
<i-j-><vi'3‘>0 <i§':j'>{K <(sTa+s1a) D> <8507, '
2 4 -
= 2K™ (1 2f1 + f2) N
with N = ) = number of n.n. cells in the system.
<i'j'>

The other possible arrangements are of the type

Vj'k'>0 = <Vi'j' Vj'k'>0 =

and are depicted in Fig. 13.

Fig. 13

= <k',1'>:
2
i'j! o}
(8.26)
o
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It follows that apart. from the n.n. coupling there is generated

a next n.n. interaction L' and a third neighbor coupling M':

configuration interaction
a ' n.n
b n.n.n
c n.n.n
d 3rd n.n .

A straightforward calculation of the corresponding terms leads

to the 2nd order contributions
(K'), = 4(1-2£2 + £,)£7 K°
(L'), = (1-8£2 + 7£,) £ K (8.27)
a'), = 4(-£2 + £) £2 K°

Thus from the n.n coupling the RG generates in second order new
"second order" couplings L' and M'. K' is considered as a first
order quantity.

d n.n and 3rd n.n couplings are present in the site spin

1f 2"
system they contribute also to first order <V>o. For the confi-

guration Fig. 12 one finds:

1 1 2 2 3 3 2 3 3 2
"Vi'j' = L(si, Sj' + sl sjI + Si sj,) + M(sil sjl + Sy sj.).
(8.28)
Accordingly one evaluates the additional contributions
. _ 2 2
(K )1 = 3f1 L + 2f1 M
' 2
(L )1 = f1 M (8.29)

I
o

(M),
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Collecting the various contributions the full second order RG-

transformation reads

_ 2 2 2 _2 2 2
K' = 2f1 K + 4(1—2f1 + f2)f1 K™ + 3f1 L + 2f1 M
v el 2.2 2
L' = (1 8f1 + 7f2)f1K + f1 M
M' = 4(-£2 + £.)£2 &2 (8.30)
1 2771
Fixed points:
The fixed points of the transformations (8.6)
* * %
Ka = Ka(K ) (8.31)

can be calculated (numerically) for the 1St and an order appro-
Ximations to the RG-equations (8.19) and (8.30). In both cases
one finds a nontrivial fixed point (we do not consider the fé

term contributing only to the regular part of the free energy

density).
; 1St order 2nd order exact Ising
* |
K | 0.3356 0.2789 ln3/4 = 0.2744
*
L o) -0.0143 o
(8.32)
*
M o -0.0152 (0]
%k
h o 0 o

Linearization, critical exponents:

We now linearize the RG-transformation (8.6) near the fixed
point (8.31)

K' = * BKa . * x 2 .
o =Ky ¥ %(5§E)K=K (Kg=Kg) + 0 ((K-K) 7). (8.33)
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The matrix

aK'
_ O _ m€ o
TaB = BKB)K=K* T + Ta (8.34)

consists of an even (zero external magnetic field) and an odd
(external magnetic field) part as the RG transforms even into
even odd into odd terms. T can be calculated explicitly from

opB
(8.19), (8.25), (8.30) with (8.32).

e(1) _ . mo(1) _
e (1.634) ; 7O (3.03)
1.8966  1.3446 0.8964
Tzéz) = |-0.0403 0.0 0.4482 (8.35)

-0.0782 0.0 0.0
The matrix TaB can be diagonalized by a change of parameters. Let

*
gB = C o (KO._K(X)

(8.36)

B
[ ' *
gB - CB(I (K(I-KO.)

o
a
be a linear transformation in parameter space. Choose CBa such

that (eigenvalue problem)

= \A.C (8.37)

i.e. CBa are the (left) eigenvectors and AB the corresponding
eigenvalues of the matrix T. We will normalize the eigenvectors
by

C =1 . (8.37a)

Then the parameters g transform in the linear approximation

9’& = )\a 9, - (8.38)

The eigenvalues and eigenvectors for the above transformations are
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()

AT = 10634 U

A = 3.03 i) =y

A2 = 1.7835 ci?) = (1, 0.7539, 1.0961)

A2 = 0.2286 c{2V = (10 (8.39)
A2 = —0.1156 ci® = (..... Ve, 1)

This result confirms our earlier discussion on the Ising model.
There is (in 15t and an order approximation) only one even eigen-
value bigger than one and there isone odd eigenvalue bigger then
one. They correspond to the two relevant operators ()E = Z-sisj
and (DO = Zsi (see chapter 7). The other terms are irre- -n

levant (to this order).

Because of the semigroup property we must have

Y
A =1 ¢ (8.40)
o
where 1 = V3 is the dilatation factor. Thus
lnka
Yo = In 1 (8.41)

and the two independent exponents x = Y and y = Yg (see sections
6 and 7) are determined = by Xo and AE.

1St order 2nd order exact
15
X 2-018 = -'*E—gﬂ1.875 (8.42)
Y 0.894 1.053 1

All the critical exponents may be determined then,using the
scaling relations (7.14).
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Critical surface:

As mentioned above the matrix Ta
block and an odd-odd block:

B

e e e e

AR ™ o AK T
T = =
AR® \ o 1° AK® T°

The critical surface is defined by

g = © and 9y = ©

breaks up into an even-even

AK

(8.43)

AK %

(8.44)

corresponding to zero reduced temperature and zero external field.

All other parameters are irrelevant. We may write the Hamiltonian

near the fixed point in terms of the scaling parameters Iy

* * 2
H(s) = H (s) + } (K=K ) )} S, + O (AK")
o Aa (8
.45)
* *
=1 (s) + ] g, 06 + 0(g?)
B
where we introduced eigenoperators
* -1
Neg=1c,, I s (8.46)
8 o ap A Aa
o
C;; is the inverse of the matrix CaB in (8.36) and
K Yoy ! 8.47
o " Kg T % ap 98 ¢ (8.47)
The critical Hamiltonian is
(8.48a)

ok * 2
H(s)g = H (=) + ] g Og + 0tg™

with 9g = 945 = © such that
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* 3 '2
Ry H, = H + g AB g6 0 g *0(g') (8.48b)
with |AB| < 1 all B and
n I n * (n)2, , .*
(R))© H, = H + é. (™ gg 0 g +0(g )(n+w)H ; (8.48c)

In the "physical" parameter space Ka the critical surface is in
linear approximation
9g T ° 7 CEo (Ka Ka)

(8.49)

)
a
o *
g.=o0=) C. (K -K ) .
o 5odg 0% o o

The second condition requires h = o. In the even coupling
space (8.49) contains the variation of the critical temperature
with the interaction parameters. Ig is a generalized reduced tem-

perature.

For the n.n. system Ka = 0 except for ¢ = n.n.; then the condi-
tion (8.49) reads:

o 0.3356  15% order

K = Z,c K = (8.50)
o] o Eo o nd

0.251 2

order .

The critical temperature TC for the n.n. system is defined by

K = ; J = n.n Ising coupling. (8.51)

We define Tc(J) by
K- o (8.52)
o kBTc(J)
We can thus find the critical temperature TC(J) of a general

(not n.n.) system in the linear approximation:

J
i e o
T (3) =T, {1+ } Cpo T o (8.53)
oF#n.n
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Near the critical point in the n.n. system

_ v e _ _
9 = Xn.n g Ceo Xa Ki.n Ke
~ (8.54)
g T
kBT Tc

i.e. in the Ising system Ik is proportional to the reduced tem-
perature. For the even couplings subspace we depict the critical

surface in Fig. 14.

0 - K
— - 4 K*
H* B e B
A / \ 8-
-

92 \ H*
. critical

sy s - /
! critical sur surface
| face

Fig. 14

In the simple perturbation expansion considered so far one essen-
tially uses K* as an expansion parameter. As the values for K*
are not really small one cannot expect fast convergence of this
expansion. Niemeyer-van Leeuwen therefore developed a cluster
approximation not based on the smallness of K but on the fact
that the short ranged interactions are most important. Roughly

speaking one does not expand <exp—V>o in (8.9) in powers of V
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but instead tries to calculate exactly the effective Hamiltonian

-4 - v [
. H.(Si'l"'.'si'n) ) 5 . H(si'1ci'1""si'noi'n)
i|1l-fuoi|n

(8.55)

n
z <exp-V_>
(o) n o

for a cluster of n adjacent cells. Due to combinatorial compli-
cations some systematic approximations have to be made and are

possible. We give the result in Tab. 4.

# of cells in cluster >‘T Ay Kc
2 1.544 3.036 0.355
3 1.501 2.501 0.255
4 1.567 © 2.497 0.253
5 1.782 2.850 0.28
7 1.7590 2.8024 0.27416
Exact (Ising) 31/2 = 1,73205 315/16 . 5 gooo2 | 0.27465

On the basis of the AT and AH in the five-cell cluster approximation
we find e.g., the critical exponents v = 0.973 and & = 15.017

Tab. 4

The results obtained by this method are remarkably encouraging
and confirm many of the intuitive ideas on critical behavior

and the renormalization group.
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Notice that the critical exponents are independent of the point
in the critical surface. Also they coincide within our approxi-
mation with square lattice Ising values. These facts are a mani-

festation of universality.

The methods used here to investigate critical behavior do not
make use of the special properties that make a model exactly sol-
vable and hence can in principle be directly applied to a large

class of models.

We should also keep in mind that the methods using the exact
solution of Onsager for the evaluation of say the spin-spin
correlation at the critical point are extremely invdlved (see
e.g. McCoy and Wu). In contrast the RG method seems to lead to
rather good approximate results at much less technical expense

and this not only for the n.n. Ising model.



9. RG-Calculations for Other Ising Models

We will not comment on the diverse RG-investigations of the one
dimensional Ising model. The d=1 Ising system with short range
interactions has a phase transition (of peculiar structure) only

at T = o. More interesting are the d=1 Ising chains with long range
interactions in particular the so called hierarchical models which
are equivalent to Wilson's approximate RG models (field theory

version).

Of great importance are the calculations on the planar (d=2) square
lattice Ising models as they provide an important test of methods
that may be used for d=3 Ising systems (and possibly also for ro-
tator and Heisenberg models). For geometrical reasons the A-lattice

calculations cannot be directly generalized to include other models.

By universality critical exponents for A- and o-lattices in d=2

should coincide not,however,the values for fixed point couplings etc.
We now briefly mention some results obtained from RG analysis of
planar square lattice systems.

A straightforward generalization of the Niemeyer-van Leeuwen
technique from planar A- to b-lattice was investigated by Nauenberg-

Nienhuis. The 2x2-block spin variables are defined as follows:

For the ten configurations with }s, # o:
si{, = sign Zsi for Xsi # O.

There are however six configurations with Zsi = o. By definitions

one assigns to three of them (there are four equivalent choices)

si. = 1 to the others si, = -1. e.g.
(+ + - =) ’ (+ - + -) 7 (+ - = +) = Sil = 1
(= =+4+) , (-+-4+) , (-++~-) = Si! = =1.

For a finite 4x4 square Ising lattice Nauenburg-Nienhuis numerically

calculated the RG-transformation. The result obtained is



* *
Fixed point: K1 = 0.307 , K2 = 0.084 , K3 = =0.004
Criticallsing, K, = 0.420 , K2 =0 ' K3 =0
coupling °
Eigenvalues: A1 = 1.914 , A2 = 0.248 , A3 = 0.137

with K, n.n K2 n.n.n and K3 four spin coupling.

1

The results on numerical calculations of the free energy density
and the first two derivatives are plotted in Fig. 15. The critical

surface in the (K1K2K3)—space is shown in Fig. 16.

26 7
o
*
24}
22f ’
L]
L]
20}
1.8
1.6
141
12}
1.0
08
06
0.4
0.2
0
Fig. 15
dashed curve =--=- Onsager's free energy
crosses + iy (Ki) free energy
dashed-dot curve =+=-= Onsager's energy
triangles A 3£(K1) .. energy from first derivative
3K1
80lid curve Onsager's specific heat
2
2 3°f(K.) ‘ as
dots e h1 2L 1/ specific heat from second

3K§ derivative



Critical Surface

nKz

Fig. 16 )
Critical surface in the range -2 = K,, K3
direction K; = 1, K, = 1 and Ky = -1,

2 :2 secen along the

This RGV result obtained by looking at 4x4 spins! only should be

compared with the result obtained by direct calculation shown in Fig. 7.
Kadanoff-Houghton have calculated critical exponents from a 2x?2
block spin RG-transformation choosing as block spin variables

s =tanhK2 S, .

]

L |

* cell,, T
1

.

Couplings up to four (even) resp. five (odd) spin interactions

have been estimated. The values obtained (as in all such calcu-

S ——
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lations there is no control on errors made in the approximations)

are quite impressive:

1/v

0.999964 (exact: 1)

B/v 0.12447 (exact: 0.125)

Introducing a variational principle Kadanoff has improved the

technique of approximate lattice RG calculations. By use of these
variational methods the first lattice RG calculations for the

d=3 Ising lattice have provided rather good numerical results

for critical indices (see Tab. 5).

Exponent | d = 2 _mq T.3
calculated exact calculated | "accepted"
§ 15.04 15.0 4.818 5.0 £ 0.2
2-q 1.998 2.0 1.887 1.875

Tab. 5

Kadanoff's variational principle may be sketched as follows:

The RG-transformation may be formally written as

H'(s') = - 1ln ) exp{S(s',s) - H(s)}
{s}

where the block spin transformation kernel exp S obeys the re-

striction: S has the same symmetries as H(s) and

)} exp S(s',s) = 1.
{s'}

One introduces appropriately chosen variational functions

Ho(s',s) and V(s',s) = V1(s) + V2(s‘) and defines upper and
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lower bound effective Hamiltonians by

H(s') = - ) exp H (s',s) {s(s',s) - H(s) - H (s',s)}
{s} ©
and
Y (s') = - 1n ) exp {S(s',s) - H(s) + V(s',s)}.
{s

For fixed parameters {K} and fixed S we have

1° H'(s') < HO(s')

for all configurations {s'} provided

Ho(s',s) has the same symmetries as H(s)

and
) exp H (s',s) = 1.
{s} ©
2° H¥(s') < H'(s')

for all configurations {s'} provided

is a sum of terms which are odd under a

V(s',s) lattice symmetry operation and such that
HL(s') has the same symmetries as H(s).

(Choose V1(s) odd and V2(s') such that HL(s') preserves symmetry.)
The associated transformations in parameter space denoted by RU
and RL have the property that the total free energy satisfies

Foo (RO(KD) 2 Fio, (R{K}D) 2 P (REKD) .

These estimates. hold for the iterated transformations also in the

limit lim R". Choosing manageable Ho and V one can vary the para-
n->w

meters in H(s) and S(s',s) so as to obtain optimum bounds on

P ({K}) = Fv (R(KD).




Part III. Wilson's RG and the e-Expansion

The block spin lattice RG's are in general rather complicated

(see e.g. the Kadanoff-Houghton RG for the d = 2 square lattice
Ising model). Using the fact that short range details do not af-
fect the universal critical properties one might try to study some-
what simpler models belonging to the same universality class. We
know that quantities like the critical temperature are not univer-
sal. The value of the critical temperature depends on the short

range properties of the system.

Different physical systems with the same critical long range be-
havior (critical exponents) are located in general at different
points in the critical subspace of physical parameters. Only part
of the change in critical temperature can be accounted for by a
change of the coupling strength J i.e. Kc = J/kBTC in general dif-
fers from system to system (see e.g. (8.53)). Also if we are able
to calculate the fixed point value K* for a good microscopic model
of a system in general (Kc - K*) will not be small and we will not
be able to calculate KC in the curved critical surface from the

linear approximation with reasonable accuracy.

If we restrict ourselves to study only the universal long range
properties of the system we may "simplify" the model by changing
its short range properties. In doing this we have to take care

that the long range behavior is not affected.

The modified model (e.g. the Landau-Ginzburg model in the Ising

case) has to be considered as an effective theory (phenomenological

model) for the long range properties of the original model. The
related models lie in the same (generalized) critical curface although

they may look very different globally.

We will now elaborate the connection between the Landau-Ginzburg-
Wilson model (Euclidean S4—cut—off field theory) and the Ising
model. The two models have the same critical behavicr. For the
field theoretic version other techniques will be available to

study the critical point.
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10. The Landau-Ginzburg-Wilson Model

(Euclidean S4—cut—off field theory)

We start from the d-dimensional ferromagnetic n.n. Ising model.

On a regular lattice G, the classical spins Oy have distribution

p(ci) = 8(c% - 1) i.e. o, = %1 (10.1)

and interaction

H(o) = - ngox Kgey Oy (10.2)
with (we assume periodic boundary conditions)
k >0 for |x-y| =a
Kx-y = (10.3)
o otherwise .
The partition function is
z = [ T[] do, o(c?) eHO) (10.4)

XeV
a

The correlation functions may be obtained by differentiation with
respect to the x-dependent external magnetic field JX from the

generating functional

203} = 27" [ Tldo, p(c2) e H(O)*(I.0) (10.5)

X€EV

a

l.€.
6Pz {3}

> =

LSRR ST .., : (10.6)
P 1 p 'J=0

We have introduced the "scalar product"

(J,0) = }.J . (10.7)
}2{ XOX
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We now approximate the Ising model by replacing the discrete spin

distribution
2y _ §(g2-
p (ox) = 0 (0 -1)

by a continuous spin distribution

u 2 2
p(oi) = FQ e "vo (o, ~1) (10.8)

with uj >> 1 (see Fig.17).

p (o)

| . |

| |
N M.

-1 +1 o +1 o
Fig. 17

We notice that
u 2 2
s(62 - 1) = lim VEQ e U0 (0,=T) (10.9)

u ->co
O

i.e. we recover the exact Ising system from its continuous appro-

ximation in the limit uo > o,

For the continuous model we may write

2= (=) e N0 [ TTas, e H(7) (10.10)
X
with
H(oc) = H_(0) ﬁint (o)
H (0) = - xzyox (Kx_y - 2ug ax’y) oy (10.11)
Hint (o) = uo Zo
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As: 1T exp-uo(oi-ﬂ2 exp (-u )) oi + 2ug ) oi) exp - Nug
X X X

and

Let us express the Hamiltonian H in Fourier space:

We consider the system to be centered in configuration space round

the origin
A

with box size L = a*l ( 1 even). The first Brillouin zone is then

= ; =2r 1 . =
Al,a = {a; qi T a(i+1) ‘2 +n) ;n=0,1,....,1} .

-

oA
=
+
[y

T .
a(l+ )~




- 65 =

On the first Brillouin zone (with N = (1+1)d)
ad Y- emiax _ dy 5D q €A
XGV qlo Ia
and 1,a
1d . oiax _ a-d aidé P xEV, .
[4 14
.Na” q&vy
We défine the Fourier transformation from Vl a to Al a by
14 7
6q =ad 7. e 9% o,
xEVlla
such that
o, = — e L
X Nad qeA g
l,a
~ ¥ ~
For real 0. we have 6 = d _.
X q -q
Inserting (10.13) into (10.11) we obtain
A ~
o) =5 =3 1 15g%6;
Na qEAl,a
2 1 ~ ~ ~ ~ a .(d)
H (o)=u 27 ——— : o 0 o] o] Na~ 6§
int a2 nah)? q.én, 91 92 93 9y q,+0
i~1,a
with
Z_ = 2k az—d > 0
a
u
f2 = 2572 (k—°+d) <o
u
o d-4
u =-—%a > 0
4k
and
~_ _ d aq.
T = a® + 472 )} sin =

(10.12)

(10.13)

(10.14)

(10.15)

(10.16)



We used (K = k, |x| = a and X = o,|x| # a)
> a —igx _ .4, ¢  ~igza = ig;a
K =a ) K_e ak ) (e + e )
q X s
pid i=1
a aq;
= 2ka ) cos g.a ; 1-cosqg,a = 2 sin WL
. i i
i=1
The reason for the choice of diverse factors will become

clear immediately. If we now renormalize the spins and field

variables as

X
. a (10.17)
g =%— 3
X /Z_ X
a

the Hamiltonian takes the simple form:

R AL
(10.18)
ﬁint(s) = ua® )) Si .
X

The partition function is

Z2=C-=+2 (10.19)
with

-1

- (uiza)N/2 e—NuO
and

Z = [TTas, e H(S) (10.20)
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The correlation functions are

<6 ....0 >=(z ) P25 .5 > (10.21)
X X a X
1 P 1 p

and the generating functional for the S-correlations is
2{3} =77 [TTas,, e H(8) + (d,5) (10.22)
X
In this representation our continuous spin model is what field
theorists call a lattice approximation of an Euclidean Bose

field theory. The close connection to field theory can be seen

as follows:

1. Gaussian model

Let us set u = o and choose

This corresponds to a choice of a Gaussian spin distribution

2
op 2P0y (10.23)

2y _
plo) =|—e
in the original model (Fig. 18)
p (o)

Fig. 18

and as a varies the Ising coupling must change as

b

d+ng“

k = k(a) with k(o) = (10.24)

oo
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We easily calculate the Gaussian integrals

= — I -
2.~ (T, e 1= . . ¢
) -1 s |? 6!
_ ~ 2 .d § '°q a,q o | T TN
Z,=[ T[as_ e Na | N
g 9
(10.25)
N/2 d. +N “=1,=-1/2 N _aN
= m"? wa®)Maer 6 )72 T &
N2, -d“‘l')_ ~ th
= amy™ a’ Y
and QM c“‘\
- _ 1 - -—
2,{3} = exp 5(3,G,J) (10.26a)
with
G,6, P =—7 1 13 1%c, . - (10.26b)
Na q q 9
The two point correlation is
§%2{3} 1 iq(x-y)
<8, 8> =w===tsd =G (x-y) =—3 le G, o-(10.27)
63,83, 3 =0 Na® g d

All higher correlations are products of two point correlations

i.e. all higher "connected" correlations are zero.
Now we may perform the infinite volume limit N + o«
1 +1/a a

- 7 [ da....
N> (27) -t/a

1

Nad

T5 oeos
q

and the continuum limit (field theory limit) a =+ o

1 r/a g 1. %™ a
5 | da... > 7/ da...
(2m) 7 -7/a (2m) -
and
1 1
G = -
aq 2 -9 d . 289y m2+q2+0(a2q4)
m +4a Z sin ——

1



The limits exist for

23} = exp %(S,G 3) (10.28a)
with
- - 1 ooa = 2 1
(J,G J) = — ] da%q |J(q)] (10.28b)
d 22
(2m) 7 - g +m

the two point function

ig(x-y)
1 d e
<S_ §.> = G(x-y) = [ d°q =——5—5— (10.29)
L § (Zﬂ)d 2+m2
and the Hamiltonian
B (s) =+ —— [ a% |st@]|? (q®m?) . (10.30)
o 2 (2w)d

This identifies the renormalized Gaussian spin variable in the
limit a + o0 as a free Euclidean Bose field. In coordinate space
we have

H (S) =5 [ a% {s(x) (-a+m®) s()} . (10.30a)

where A is the Laplacian. m is the bare mass of field S.

2. Non Gaussian model

We now consider the non Gaussian system defined by the Hamiltonian
(10.18) . We expect the infinite volume limit of the 2z{J} (see

(10.22)) and the correlation functions to exist whereas Z « exp - fN

with finite free energy density £

The continuum 1limit in general (for d>2) does not exist (renorma-

lization problem) although formally we may write the Hamiltonian as

- a1 mZ 2 4
mm—jdx{?mmwm)+7 S°(x) + us " (x)} . (10.31)
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Notice that in the field theory language the terms "free" and

"interaction" are essentially interchanged (up to Sz—terms):

st (x) ol
X
scalar self interaction part of free site spin
distribution
(BS)Z(X) o_0
X x+a
free scalar field n.n. spin interaction.

It is a (quite depressing) fact that we can do explicit calcula-
tions in non trivial field theories in general only by perturbation

theory. So we have to say a few words on it.

3. Perturbation expansion

. 2 . 2 .
We consider m~ and u as independent parameters and m~ > O as in

the Gaussian model. After summing up the pertﬁrbation expansion

2 2

we can then set m“ = A < o as given by (10.5).

The perturbation expansion is a formal power series expansion in u:

_ ® )] ~H_(8)
Z = ] (‘J”, add y [ TT as sé .55 e ©
J=o Yqeoo¥y X 1 3

and (10.32a)
- > -wd 3 ~H_(S)
Z<S_ ...S_ > = ) {=u)” 53d I [ TT as_ s, ..s st . ste O,

X X . 3l X X X y Y-

1 P 3=1 Yq-0¥5 X 1 p -1 ]

(10.32b)
Notice that by (10.22)
- ® . ~H_(5)+(J,s)
z2 2{3} = § < [T as_(H, .(s))) e ©
j=o J! % X 'int
(10.33a)
w . -H _(S)+(J,S)
= l_.. T _6._._ J das o
jzo 31 (Hint(éj)) / lT x ©
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where the last integral is the Gaussian functional i.e. by (10.25)
and (10.26)

723} =z Y @ ) exp LG0T . (10.33b)
o .- 3J! int ' .= 2" '"a
j=o §J
The Gaussian integrals
-H_(8)
4 4 _==1 4 o
[S, r--vsS, Sy ...sy_] = Z_ f‘ﬂ'dsx Sy -+:Sy © (10.34a)
1 P 1 X 1 3j

are easily evaluated from the formulae (10.33)

s, ,....501=2_ (2 )Y exp X(F,6, T
X4 Yy o 83 83 27 a L
) X4 yj J =o0
(10.34b)
_ s s .4 1,BHMI = . =, B4
- - - .(—) (-2-) 2 —+4—— (J,Ga J) 2
§J §J (Pz—l)!
1 Yy
We then have
S O ZUR s B
z =72, ] (fu)- 534y [sﬁ ...s; ] (10.35a)
j=o 3! Yq+-¥5 1 J
and
_ _ o ® o _yd s
Z<s_...s >=70_ ] _(1]1_)' a3d § (s, 33 1 . (10.35b)
1 P j=o : y1...yj 1 3

A convenient book-keeping of the contributions to (10.34) are the

Feynman rules i.e.

4 =
[sx1...syj] = ;.TTG(zi—zk) = ; {(:::Z\ (10.36)

where the sum extends over all possible Feynman graphs ' with



d c
al
vertices Y ——exX
a b
and
lines ;;————%k zi,zkE(x1--.yj).

To each line joining two vertices z; and Z, there corresponds a

factor G(zi—zk).

Counting only differently looking graphs we obtain

= ==1 1
2 72 '<S_ ...8_ > =) —=— I (X,,...,%X)
o x4 xp T Y(I') | P
with (10.37)
i 3.4
In(Xqpeee,x ) = (-4u) * a'l ¥ 1T G(z,-z,)
r*=1 P z. 2 i %k
Y1--YJP Ik

where jF is the perturbation order of T.
The combinatorial factor Y (I') is given by

y(r) = s-2%Pf@in)Y

where
0. number of Q (single lines)

B number of (::) (double lines)
Y number of (EE) (triple lines)

and s the number of permutations of y vertices leaving T' invariant.

Examples: (even Hamiltonian)
7 72 8+ 88+CQQ+ ' Y
<0’xo'y> = —o + O—Q—o +~wo+ h@—v"'"‘

X Y

X x2
X X
1 4
3 % &

+ disc. + ....

A
Q
o]
v
I
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In terms of graphs
i)  division by Z 281 is equivalent to the omission of all
vacuum graphs (®)

z{g} =2 'fnds cTH(E)I+(I,8) [T as, ...
2

ii) taking the logarithm is equivalent to the omission of

all disconnected graphs (conn)

in z{J} = 1n [Tds, eTHEEIHILS)_ g7 o [ TTas,---
=, conn

(a vacuum graph has at least one part which is not connected to

an external leqg).

Thus in terms of graphs:

<§_, ...8_ > =] @
%1 X T X X
p ® 1 P
(10.38)
¢S_ ...s, >°OMR =y
X1 xp T 1 =
®,Cconn X4 Xp

In momentum space the connected correlation functions take the

form
-~ conn 1 - conn
<S_ ... > = cen
" b, L y(ry Ir(Pyree-pp)
with
~ . L
I (py.n.p ) (can) T nads® 1y L
rer 2P0 adl kL k, n=t 2, -2 S 2309y
17001 m“+da © ) .sin 5
i=1
Here (p1,...,pr) are the p external momenta (k1""'kl) a set Qf

independent internal (loop) momenta and the line momenta of the
L lines (q1,....,qL) are linear combinations of the p's and k's

such that at each vertex the momentum is conserved.
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4. Landau-Ginzburg-Wilson model

It is almost impossible to calculate the sums (10.39) even in the
thermodynamic limit. Therefore we have to approximate the lattice
system by a model having identical long range properties and being

manageable in perturbation theory.
The following changes (approximations) will be made

i) the propagator is replaced by its small momentum (long range

part

1 1
2895 m2+q
2

d
m2+4a 2 Z sin

i=1

ii) in the infinite volume limit we replace in momentum space the
box of length 21T/a by a ball of radius Azg (again the small

momenta are not affected).

\
\‘\

\t——-a-
y

- — — —e——— =

The model obtained is the Landau-Ginzburg-Wilson model. It is de-
fined by the following Hamiltonian (we write it formally in the

infinite volume limit):

Hy(8) = By (8) + Hy i) (8)
H,(S) =+ fq 184l (q%+m?) (10.40)
|ql=A
_ 5 . h da .(d)
HintA(S) néz jq1...fq2n Sq1...Sq2n (2m) ~ 6 (Zqi) u2n(qi)
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The generating functional is

z,{J} = éT;’ ds, exp - H;(5) + (3,S)
(10.41)
s exp - H,_,, (%) exp 2(3,6 3)
= eXp inth’ ;s Xp 7\
J =
with
- - > 2
G635 = [, Bl o
q
g“+m
lal=<A
. -d,.d _
(we abbreviate (2m) ~fd qg....= fq....).
In general we will take u, =u and 2un = 0o, n > 2.

The Gaussian integrals are evaluated by exactly the same rules as

above with the replacements

i) > f

Na k !
d s(d) d. (4)
§
Na q, /0 > (2m) 6 (Zqi) (10.42)
1 L, 1
_, d aq., 2 2
m?+4a"2 y sinz—ii m +q
i=1

in formula (10.39).

Remark for skeptics:

The Landau-Ginzburg-Wilson model can be related to the continuous

spin lattice model in an exact manner as follows

i) Expand the propagator in HO(S):

= 1
Hy(8) = 3 —3

—— ) |s |2(m2+q2+a2q4+ ..... )
Na g d

and do the perturbation expansion with respect to the simpler



ii)

free Hamiltonian

- -t
The rest of HO being incorporated into Hi

Hint

Perform a transformation of variables (Fig. 19)

vant and irrelevant fluctuations)

4

0

()

oq

19

1
2

Nf =

1 ~
—g LIS
Nad g g

|2( 2
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m +q2).

Hy L (8) + (H (8) - H_(S))

A
Na®

~ ~

q € A

Soq + S1q l,a
- T 1
J Sq lal < & < a 1+1
L O otherwise
(o |a| =&
1
- T 1
L 8q  lal > A Joyl = 3 137
LT L2 S
/ S1q
/ ~ N7
/ S "\_
fo) -
/ ?//, \‘
o = - ”r_'n'__ _l;-;..
\ A i? 1+1
."-.\ / KA,].
. E—
T — __”:/__ Al'a
Fig. 19

nt

)) |Sq|2(a2q4+ higher terms).
q

(into rele-
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iii) Eliminate the S1q fluctuations as these are expected to be irre-
levant in the long range region. By this elimination we may
define a new effective Hamiltonian

~

exp - Hiff(s‘) = T ds,.  exp - H
] qEAl a
14

~

o is chosen such that ISq[2 q2 term in H =~ has coefficient 1.

If we write

= v 1 p p dg (a) 2
H, _(8) = ] ——s—= ) S_ &S Na 8 u, (g.;a,m",u
1,a n=1 (Nad)Zn ap- -y, q, 95n Zqi,o 2n 71
EAl,a
and
eff 'y _ % 1 p p -d . (d)
HA (S ) = z —'-“——_a'—'TZ-H 2 Sq ...Sq NAA $ Zq.,o X
n=1 (NAA ) dq-: -9y, 1 2n i
K
€Kp1
X

' 2
uzn(qi;A,a:m )

the transformation into the Landau-Ginzburg-Wilson form of the model is
characterized by a transformation in the parameter space

" _ (Reff

2n u)2n'

This relation can be calculated in perturbation theory.

Notice that we may give upper and lower estimates on the lattice
model in terms of cut-off models also if we perform the transfor-
mations ii) and iii) using the original free Hamiltonian ﬁo to-
gether with the estimate

[\

1 - 1
<G < —————
m2+q2 aq 2ﬂ2 .\ q2
4

»bl:l

and the upper and lower cut-offs.



—
I
o
B
V)]
3
[ol)
—
1
I
o=

We conclude that the cut-off system (10.40) representing the lattice
system (10.18) in the region |g|<A exactly will have an infinite se-
on® The U,
turn out to be irrelevant in agreement with the heuristic arguments.

quence of non vanishing couplings u n>2 will, however,
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11. Wilson's RG

The RG for the Landau-Ginzburg-Wilson model is defined in essentially
the same way as the block spin RG (see chapter 3.2). Only the trans-
formation of the spin variables is changed (simplified!). Wilson's

RG is formulated in momentum space: relevant are the small momen-

tum (long range) fluctuations irrelevant the large momentum (small

distance) fluctuation.

Definition of Rg:

A. Enlargement of the system

N=N = s8N (11.1)

This is trivial in the thermodynamic limit N - o,

B. Transformation of spin variables (Fig.20 )

~ ~ -~

S = S + S

q oq 1q
- A
. Sq lal< g
S = relevant part (11.2)
oq A
o s<lal=A
A
~ o lal= 3
S1q _ irrelevant part
- A
Sq s < lal =&
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C. Renormalization

S = q S . (11.3)

D. Elimination of irrelevant fluctuations

z{J} = [3 [s exp {-H,(S_+S;) + (J,S_+S))}
ogq, ~1q
(11.4)
L}
= fgo exp {-HA(SO) + (J,So)}
a °4 s
. provided Jq has support in |q|sg . (We abbreviate Iﬂdgq...zfs...

E. Dilatation of the system:

sq = q'
(11.5)

Together with C. we thus have to substitute

oq T %s Sq'=sq
in (11.4).

These transformations define the Wilson RG

Hy(S) =RH (S) =-1n [_ exp - H,(S)|. B (11.6)

= S1 Soq=as Sql=sq

Rs has the semi-group property

R+ R =R : s.8, €R ' (11.7a)

172

provided

o s o = q ' (11.7b)



- 81 -

which requires

If the Hamiltonian

7

H,(S) = ...
A n=1 94

is of short range interaction type the U,

functions in the momenta.

Hamiltonian has the form

~ ¥
. S

don 94 2n

il =~ 8

H. (S ) = .
A n=1 fq1 I

where the couplings uén

We may write

L —
Yon T (Rsu)Zn

(x independent on s).

(2m 96 N zq)

(11.7¢)

2n(qi) (11.8a)

(qi) must be analytic

In perturbation theory then the transformed

. d . (d)s ' -
pooeSqr (2 T8T%Eat ) vy (afiu) (11.8b)

2

up to 6-functions are analytic in the qi.

(11.9a)

Splitting off eventual products of ©-functions (appearing explicitly

in the perturbation expansion see below)

u2n (q) =T-|— eqi

uén(q')=TW-GQi

(11.10a)

we may expand the couplings 4 in a Taylor series about g = o

~ 11
Y2n (@) = ) Pa(q1 o
n,l,a
and the RG takes the form
1
gnlllal(glAls) = Z RS(g'A)n

l2n
Ay )gnla (11.10Db)
‘l'a"nlagnla(A). (11.9b)
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The Pa are polynomials in (q1...q2n) of degree

1l = l1 + 12+ cres + l2n (even)

0 labelling the different polynomials of degree 1.

Transformation of correlations

For the Wilson RG the transformation of ccrrelation functions is

formally rather simple. In the restricted (long range) region

la; | < é we find

~ ~ ~ >
<s(q1)...S(qn)>u = g™¥ «g (sq1)...S'(sqn)>ul=R N (11.11)
s
As in the region Iqi|sé Soq = S we immediately obtain
~ ~ -H, (S)
f g S ...S e A
= 94 9n
- ~ - s - —HA(SO+S1)
= [3 oq. S0 [ 5 e
R O 1 9h = °1
;
- N VALY
m 5o O °9p ~
Soq=aSSSq
L]
~ ~ -H, (S8')
n % A
= og f gt Séq "’Séq e :
= 1 n

this proves (11.11). Equation (11.11) is the analogue to the block
spin relation (3.14).

Remark: Formula (11.11) is used to calculate the original corre-

lation functions in the restricted region as follows:

~ ey

. . 1
i) calculate <Sqi....sq. >y in Iqil < A

ii) use the "scaling formula" (11.11) to calculate
<§  ...S_ > in |q,| < A,
d, q, u i s
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The sense of this procedure is that the asymptotic part of the
original correlation functions in the limit s + « at the critical
point is calculable from non asymptotic (finite distance) corre-
lations with a "simple" fixed point Hamiltonian H*: i.e. if we
choose s such that Sq; = 9,3 fixed we have as q; > ©

- - . ~ |9 |nX _3, -
<S(q1)...S(qn)>u |q | <8'(qyq)---8(a ) > %

o

thereby no subsum of the momenta 94 to q, should vanish.

Transformation of free energy density:

For s >> 1 the energy density can be written as
= -d_, '
f(u) = g(u) +s "£'(u') (11.12)

where the regular part g(u) is the constant (So-independent) term

appearing by the elimination of S fluctuations and the singular

1q
part f£'(u') is the contribution coming from the transformed Hamil-

tonian.

For the finite system we easily derive a scaling formula for the

free energy density. The free energy L

Fyo = -1n f];l'dsq exp - H,(8) = - 12‘

conn

is given by the sum of vacuum diagrams. By the RG transformation \

we obtain

= 1
FN' GN'—N + FN + AN
with contributions

Gyi_y = - In ITT-dS1q exp - H,(S+S,) ="
: q So—o
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the vacuum contributions omitted in (11.6)

D [~ o ey o iil'
F'y=-1n ] LT dSq, exp ~ H, (S') ;

conn
the free energy part given by the transformed Hamiltonian and

Ag=-1In Jlog==-Nx1lns ; N= ] i N'' = ). = s
o<qsh/s o<gs=A o<gs<h/s

is the part coming from the change of phase space
p = N7 oaan
TTdSoq = a [l as g

The free energy density thus transforms as

(ws)
f(u) = g(f)(1—s_d) + x s_dlns + s_d f'(u'=RSu).

This proves (11.12) for s large.

]
Perturbation expansion for HA(S‘):

We now expand the RG-transformation (11.6) in a formal power series

of HintA' From the support poperties of SO and S1 (e.g. quoqs1q=o)
it follows
HoA(So+S1) = HoA(So) + HoA(S1)' (11.13)
Thus
' -H ,(S,) -H, (8 +5.)
o _ oA "1 intA "o "1
Hy(8') = H_,(s)) - 1n | s, e . .
- 1
Soq™%s%q ' =sq
o n (11.14)
= H_ ,(5) Z-(-'—L—Hn (s+‘S )exp +(J,,G.J
oA**o - n! inth'®o" &7 P 219954 11 _ :
n=1 1 J1—o
2
conn
S =a_S'
oq “s” sg
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Here we used the analogue formula to (10.33). The omission of
vacuum graphs ® means that we have no constant term in H'(S')
(regular contribution to free energy). Omission of disconnected

graphs (conn) means taking the logarithm.

The "propagator" G1q related to HoA(S1) has support in the shell
A la]l = A i.e.

B T2, 2, 2 -1
(F1,GJ,) = jq |J1q| (g“+m*)
A/s<|qg]|<h
and (11.15)
_ 8(A-1gq]) e(|g|l-A/s)
G1q 2, 2
g ~+m
where
1 X > 0
e(x) =
o X < 0o

The Gaussian integrals in (11.14) are evaluated according to the

rules given in section 10.3 with the following modifications:

Internal lines (g%T terms from Hint) have associated a propagator
Gyq With momentum in a shell A/s < |g| £ A. External lines (S,

terms from Hi ) have associated a factor SOq with momentum in

nt
a ball |g| £ A/s. To the s? interaction term there are 5 types of
vertices
§ 4 _ 4 3 5 2,8 .2 § .3 § .4
(so+—_5J1) = 8, + 48] _6J1 +6So(—6J1} + 4so(—6J1) 4 (—6J1)

Only the 1-lines arée contracted.
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]
Feynman rules for HA(S'):

We may write H' as a sum

(11.16)

“H (S') =] g, (s ) = V.

A T g =
n

2]

n

r
n
(8 ,)
J S ,) = o 5
Fn q Vieimiminimin w20
1° The graphs Pn are all possible connected non vacuum graphs with
vertices /%\
|
94y 9y 93--9ppe
internal lines —iti .,
99 %
external lines -
qe
2° The lines at each vertex are labelled by Qqreser9y incoming
momenta

internal momenta range: A/s < [q | < A
(S1—1ines)
external momenta range: |qe| < A/s.

(So—lines)

The contribution J corresponding to Pn is then given by the

T
following assignemeﬁt:
o ;
3~ Associate to each
; d. (d
vertex : /ﬁ?f\“\\ = (2m) 6( %q1+---+q2nn)u2n-(Q)
O sia, on
: . e d. (d) 1
internal line : rtoee = (2m) T8 T g tay) 5
9, 9 qa+m
external line : —£ . =35

q oq,
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40 Integrate over all momenta

! aq ...... (S,-1ines)

(2m? a/s<|q |sn 2

1 a .
(2n)d ) S SR (5,-1lines)
ERESVE
lo) .
57 substitute:
~ ~ '
oq - oy SOsq and sq = q' .

gl |
Omitting the factors Sq , the integrations over the

external momenta qé,and the overall € §-function (2n)d6(d%qé1+..+qé2n)
(we denote this omission by a(!)) in these rules, we obtain the Feyn-

man rules for the perturbation expansion of the transformed couplings:

. v (11.17)

ul (ql,...q} ) = (R_u) = )

2n"*1° 2n s '2n s C ORI 955
n

!

conn

(1)

Before we are going to perform the lowest order perturbation
calculations for RS we have to investigate under what circumstances
we can expect the perturbation expansion to make sense. This will

be done in the next section.
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12. Power Counting, Motivation of 'the e-Expansion

Disregarding convergence problems with infinite series we may
estimate the behavior of the transformed couplings uén(q') for

large s (power counting) in the perturbation expansion.

Let us introduce in virtue of (11.8) and (11.10) the operators:

- 1 1. . .
_ 1 2n
©nla(sq) = TT eq_i Pyl vty Sy Sy (12.1)

such that we may write

d.(d -
= S . S
8 n,:zL,agnl“ Iq1 qun (2me )(qu) Onlo‘( q
(12.2)
'eary o . dq(d)y L
(S = T g fgreeeefgy  2m s tzap) 005500
n,l,o n
with
g' =Rg . (12.3)

By definition of the RG-transformation g' picks up powers in s

from the substitution

S =s%s ,_
with °q 9'=sq
di2-m (see (4.11)).
We have
~ iy _
(i) by the substitution as Soq > sxsq. and g > s 1q'
- _ 2nx -1 ' o
@nla(soq) = 2% 71 () n1a Bgr) (12.4)

2nx-1 2nx
(s

a factor s renormalization factor, s_l dilatation factor)

(ii) by the change of integration variables

a a  .(d ~(2n-1)d .4 a .(a
d ... )d ) e e = .y S ', > e
i ay ) 0y, ¢ zq)) s Jag, Jag, Xzq' )

-(2n-1)d (12.5)

a factor s (phase space factor)
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and thus

g'(s) « s” (12.6)
with

w = 2nx - (2n-1)d - 1 =d - 2nds-l . (12.7a)

In this formula we introduced the dynamical dimension of S (see
(4.10) and (4.11))

d-2+n

dS = d-x = 5 (12.7b)
According to the definition (5.6) the "operators" (D nlg FeSP-
the couplings In1q 2F€ classified as:
A
relevant win,l) > o ; gﬁla « 8 > o (s+»)
marginal w(n,1l) = o ; gﬁla (const. or slowly variing)

W

irrelevant w(n,l) <o ; g x 5 > O (s+=) . (12.8)

]
nlo

We will assume that the terms irrelevant order by order in the per-
turbation expansion are irrelevant also in the summed up theory.
Irrelevant terms will be ignored as they are transformed away by

the RG-transformation.

What are the non irrelevant "operators"?

From positivity of the two point correlation n must be non negative

We further expect (see below and from known results for the Ising system)

d > 4

o]
I

2 (Ising).

o]

There are also indications that n(d) is a monotonic continuous

function i.e.

for d

v
3

v
o

v
N

S



- 90 -

As we will see we may use for d>2 the canonical classification

setting n = o (rough estimate).

The relevant and marginal terms can be read off from the following
table where we list the values of w(n,1l) and the corresponding
fields (in brackets the dimension for which the corresponding
field is canonically marginal or gets relevant by lowering

the dimension):

n
1 1 2 3 4
52 st s s8
o) relevant 4-d-2n 6-2d-3n 8-3d-4n
2-n>0 (d=4) (d=3) (d=2,66..)
s 92 s s3 32 g s® 3% g s7azs
2 (marginal)
-n 2-d-2n 4-2d-3n 6-3d-4n
(d=2) (d=2) (d=2)
s " s s3 3% s s® 3% g s’ 3% s
4 irrelevant
-2-n<o -d-2n<o 2-2d-3n<o 4-3d-4n<o

We summarize the canonical classification:

1) d > 4 : Only Sz(x) and S32S(x) are not irrelevant i.e. the

critical theory is a free field theory (Gaussian model)

2) 4 2 d > 3 : The S4(x) term appears as an additional relevant

(d=4: marginal) field

3) 3>2d > 2 : More and more terms Szn(x) (n=3,4,..) (n =< agi)
appear (at d < %%T) to be not irrelevant as d decreases.
So 86(x) in d=3 Ss(x) in d=2,66.. etc.

4) d = 2 : Canonically w = 2-1 i.e. it appears that all terms

S2n(x) are relevant and SZn-3

325 (x) are marginal.

Dynamically, however, with the Ising value % for n only the

terms S2n(x) with n < 8 are not irrelevant. In any case the

term with the largest w(n,l) dominates provided the corresponding

coupling is non vanishing.
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The conclusion we have to draw from the power counting considera-
tion is the following: In d 2 4 dimensions the critical theory is
Gaussian i.e. a free field theory. A non trivial theory is expected
for d < 4 dimensions. It looks plausible that the critical theory
(e.g. critical exponents etc.) depends continuously (even monoto-
nically?) on d. Wilson and Fisher proposed on this basis the e-ex-
pansion. This expansion in the dimensionality € = 4-d > o of the
system around d = 4 appears as an asymptotic expansion around the
Gaussian model. It is in this case that we expect perturbation

theory to be applicable.

By our consideration (trueto all orders in the perturbation expansion
according to power counting) Kadanoff's picture on critical beha-
vior 1is confirmed for the Euclidean cut-off field theory model

(and to the extent of its connection with the Ising model also for

the later one). According to this picture the effective Hamiltonian
describing the critical long range behavior is "simple" in the sense
that only a few couplings are relevant and «-many irrelevant coup=-

lings do not contribute (universality).

Important remark:
The Ising energy density CE defined in {(6.2) has in the continuous

spin model defined in section 10 the form
N - _ 1 _ 2
bE(x) = 321 Oy Kyey Oy = 3 S(x) ( -A_+m_) S(x) (12.9)

2d. By the power counting argument 82 is relevant

with mg = -2a
and SAS marginal irrespective of the dimension i.e. the 82 term

is strongly dominating SAS in the critical region. Therefore

152 (x) (12.10)

E(X) = E

represents the renormalized (by mg) energy density near the cri-

tical point.
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13. Calculation of Fixed Points and Critical Exponents in

4-¢ (e > o) Dimensions

The analysis of the last section suggests that an approximate
calculation of Rg by the perturbation expansion (in Hint) is

possible for large enough dimensions (at least for d=4).

We consider the system defined by HA(S) with couplings (taking

also the lowest irrelevant terms):

4 b

1, 2 2

1l

u + 2
4 vog

o
Il

Ye = V3

X<
; EvB (13.1)

u o (n>3)

2n

(where q? = (q1+q2)2 + (q2+q3)2 + (q3+q1)2)-

We have to calculate to lowest order (we expect u to be of first

order the 4 of higher order)

: 1, '2, '2 ' g

u, = E(m +q 7) + \ﬁq + ...
] 1 ||2
u4 =u + Vég + e
(13.2)
¥ 1
u6 = V3+..
L
u, = . (n > 3) .

According to (11.17) we obtain
11
e, = — + JL + _&u + —u@—+0(u 3 2 2 v2)
= I1I 2!
_O_ + JL + %_
2v V3
u (13.3a)
/(1 u s

u

u
ué = {;}{f}S i;>~——1<5- + 9 crossed terms + 0O(...)
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o give no

(Notice that graphs of the form
contribution due to the supports of the o- and 1-lines in momen-

tum space.)

Thus using the Feynman rules the RG-transformation reads:

' 2x-d (1,2 2 o2 2

u, = s {i(m +q~) + 6uI1 72111112 48 u I3(q)
4 2 : 2
+ov.q o+ 12 v2(q I1+I1) + 90 v, I1 + ...}
(13.3b)

' _4x-3d _ 2 2
w, = s {u 12 u [12(q1+q2)+ 2 crossed] + v,q” + 15 v311+...}

' 6x-5d .. _ 8 2 0
ug = s {v3 75 Y [ + 9 crossed] + cecen.. }

2
(q»] +q2+q3) +m

where we still have to substitute g = s_1q'. The integrals I, are de-

fined in Appendix 13.A. They are functions of A,s,m2 and d.

The approximate RG-transformation for the parameters in
(13.1) takes the form / '

L] - 2 .
In'2 = 6279 (In?i6ur, -720°1,1,-48u%1 490v, 12412, T +. . .}

2 2 1 3 271 271
1.'2 _ 2x-d-2 1 _ 21 12
54 =s {5 48u I+ v,I, + ... } q
u' s4x_3d {u - 36u21 + 15v_I. + ...}
2 371
' —_ - 1
v = s2x a-4 {v, - 48u21 + ...} (13.4)
1 1 3
' _ _4x-3d-2 _ 2"
v, = s { v, 36u”I, + ..o}
L}
v = g6x>d {v3 + ...}

We systematically use the expansion (11.10). This expansion is asymptotic for
small momenta. One line reducible graphs (can be cut into two parts by cutting
one line) do not contribute to this expansion because their momentum ?pace sup-
port is disjoint from the origin q;=0 (expansion point): ) b @i o o

This is legitimate in so far as quantities without long

range part (no small momenta) are assumed not to affect critical long range be-
havior. The expansion (11.10) is used for symplicity only. EXpansions with res-
pect to a fixed vector in a momentum shell are also manageable in order to get

better approx1mat10ns;4ﬁvl&d,vwm\NM\v{vy&. QMJMAbﬁhlo
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The problem now is to find fixed points of the approximate RG-
transformation (13.4). Even in this approximation the transfor-
mation is of very complicated non linear form and the critical

values of m, u, .... are not known. Therefore further approxima-

tions are necessary on which consistency tests have to be made.

In the perturbation expansion obviously there is always a Gaussian

fixed point
m¥ = o, u*¥* = o , VI = 0 (13.5)

present. For d>4 this fixed point is stable for (critical subspace)

On this subspace (13.5) is instable for d<4. As we will see below
d=4 a stable non-Gaussian fixed point appears which is close to

Gaussian for d<4, . but close to four.

The continuation of the RG-transformation from integer to arbi-

trary real dimensions d is defined by continuation of the Feyn-

man integrals Ii to generic d (see Appendix 13.A).

The fact that a stable Gaussian fixed point (13.5) is consistent
with the transformation (13.4) for d>4 suggests to look for fixed

points in the region

2
A/s >> m” > o ; u, v, small

and

1 > ¢ = 4-4 > o.

Thus we may expand the integrals Ii appearing in (13.4) in the

parameters

ms/A and ¢

In order to restore the connection to the Ising system we would

have to consider a different region in parameter space.

In the transition from the lattice system to the cut-off system

we roughly have
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2 2
m< + m
u - u
T 5
a

and by (10.15) and (10.9):

n? > #% = -const. qu2
u_ = const. und=? 55 g
i.e.
(%)2 = -const. u_ i large negative
A4Ed = const. u, i large positive.

The values lie far away from the fixed point in the curved para-
meter space and they are beyond the region of application of the
linear approximations which we are able to investigate. By linear
extension we will only get a qualitatively correct picture for the
relation to the original systemwhich concerns nonuniversal quanti-

ties like the critical temperature etc..

We now discuss the successive approximations of the RG-transfor-

mation (13.4).

1. Gaussian case

Equation (13.4) reads in the Gaussian approximation

'2 2x-d _2
s m

m =

(13.6)
'2 _ _2x-d-2 _'2
q =5 g
with fixed point
+

x =82 (n=o0)

(13.7)
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As
u = s u (13.8)

m=m_= o (critical point)

is
stable for 4d > 4

instable for d < 4 .

2. Lowest order non-Gaussian case

The next leading approximation reads

A d-1
' -
m 2 =529 (n? + 120 K3 i dr g 5 )
A/s  xrT+m
L} - 1
q 2 _ 52X d 2q 2 (13.9a)
A da-1
' 4x-3d 2 dr r
u =s {u - 36u”Ky f 5 }

A/s  (x +m2)2
which implies to this approximation again a Gaussian value for n:
X = —— (n = 0).

Expanding in € = 4-d and %E = 0O(e) we have to leading order:

2
1 -
m 2 = g2 {m2 + 12u Ky %— (1-s 2)} + O(UE,U2)
(13.9b)
! 2 2 3
u = (1+e 1lns) {u - 36u K3 l1ns} + O(u“e,u”)
(we eXpand st = eElnS ~ 1 + elns + 0(82)).

Fixed point of RS:

The condition for a fixed point reads
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* *
m = s {m 2 + 6u Kd A2 (1—32)}

* *

%k
u - 36u 2

*
Kd Ins + u € lns

c
Il

with the solutions

1°  Gaussian fixed point (instable for & > o)

*
u = O
*2
m = 0 .
=4
o / da<4
2° Nontrivial fixed point / ///
7/
* 1 2 - ,
Y
*
m?=-£22%+o0(? .

Linearization of RS:

We linearize about the nontrivial fixed point. We set

*
m2 = m 2 + Am2

u =u + Au
*
with |Am2| < |m 2|
Au obtaining a linear transformation for (Amz, Au) .
We obtain

L}
Am2

s2(am? + 6KdA2(1—s’2)Au}

(1+..elns) (1-72u*K 1lns)Au

>
o
I

d

Am2 ) _ s2 6KdA2(sz—1)) Am2
Au o 1-elns Au :

(13.10)

(13.11)

(13.12)

(13.13)

*
and |Au| < |u | and expand (13.9b) in Am? and

(13.14)
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By the semigroup property the linearized RG-transformation has

eigenvalue of the form Ai = syi: Thus
A1 o
Ts=
o A2
with
Y4 ln)\1
>\1=S H y1=l—ns—=2+0(€)
(13.15)
Y, Ini, 2
Az = s P Yy Sqps- =" €t o(e™)
(we used 1ln(1+x) = x+... |x| << 1).

The eigenvectors of Ts are

_ 1 _ a
L1 = (o) and L2 = (1)

a=- = = 6KdA2 + O(e)

(13.16)

(Kd =K, = (8'rr2)'-1 in the above equations).

Critical subspace

The critical subspace is defined by

Am o
T > (s»>w)

i.e. the fixed point (13.12) is approached under the RG-transfor-
mation.
Because the eigenvalue A1 > 1

T = S - (s->»)
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and by o < AZ < 1

W () ) () e

Hence writing an arbitrary vector as

Am2 1 a
= A1 + A2 (13.17)
Au o) 1

the critical surface is defined by A, = o (see Fig. 21) i.e.
2

Am a
C b

Au 1
o]

critical
surface

Am”~ = £ (Au)

Fig. 21

Just for fun let us check qualitatively by linear extension the
relation of our investigation to the Ising model. We use (10.15)
with A=1/a and choose u, >> 1:

u

~n2 A2 To
mo=2@T
(13.19)
u = EQ_ (A)4'd > Yo
4k " ax? .
By our calculation (13.18)
Ami ﬁg
a= ——=~ _% _ (13.20)

Au u
c c
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) %*
for u, large as m and u small and

On the other hand (13.19) at the critical point implies

A2
F) g (13.21)

By comparison we would get

- K _3 '
ke = 75~ = 33 © 0.094 (13.22)
B c

for the critical Ising coupling.

The qualitative correctness of our approximation is remarkable.
u, can be chosen arbitrarily @ large (as required) along the critical
surface,and ﬁz and u have the correct behaviour and signs.

Critical exponents:

n: To this order of the approximation
n=0+ 0(82) (Gaussian value).

As we will discuss below v, = 0(33) in (13.4) thus we easily get
the O(ez) term to n by taking into account the term uzlé such that

1 - ] ]
q 2 - s M1 - 96u’ I3} q 2
One evaluates 2 (13.23)
' Kd
I3 = - colns + 0(e) Co = =7 °
Then from
2
1 = (1-nlns) (1-96u colns)

we obtain at the fixed point

2
- ¥2 _ _e” 3
n = 96 Cou = %9 + 0O(e™) . (13.24)
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Notice n = 0(82) does not change the other equations in (13.4) to

the order considered.

k
2 2 1 1 a2 "Bim_
Am a« A uO(E 'k—c-) = A uo K (T TC)
i.e. Am2 is proportional to the reduced temperature t = (T—Tc)/T v
Under the RG-transformation ¢
£I = s_1 £ and t' = sy1t
- o - o
and hence
-1/
1] _ . tl Y - l_\) _
o}
To the order of approximation thus
v = % + O(¢g) (Gaussian value)

we can, however, easily calculate the O(e) term because T, is of trian—
gular form and C does not affect the eigenvalue x1 we only need
consider terms proportional to um2 in the first equation of (13.4)
i.e. the next leading term from uI1 = ... -u Kdmzlns. Then in
equations (13.9) and (13.14)

m2 = m2(1 - 12u Kd 1ns)
. (13.25)
* -

Am? = AmZ (1 - 12u K, lns) = Am? s~ 12w Kg

and Yq is changed to
%k

y; =2 - 12u K;=2- £+ o0(?
and

v = a4 E 4oEd . (13.26)
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In analogy to the discussion in section 6 we obtain the scaling
relations for the free energy density (sect. 4) énd the corre-
lation functions (see (7.6) and (7.7)) from the equations (11.12)
and (11.11) by inserting the linearized form of RS and setting
the irrelevant variables equal to zero (the generalization of

RS to nonvanishing external field is straight forward) i.e.

A, =0 (Au=o0) in (13.17) am° = t (y = y):

£(t,h) = é«t,h) + 579 £ (ts¥,hs%)
(13.27)

<§(q1)...§(qn)> (t,h) = snx<§(sq1)...§(sqn)> (t\sy,hsx).

If the leading irrelevant term Au # o (A2 # 0) we have correc-

tions to scaling governed by the exponent

W=y, =-c+0(e) . (13.28)

The scaling variables I4 in which Ts acts diagonally J{introduced

in (8.45)) are the variables introduced in (13.17)

— 2—
g9, = A1 Am aAu

9, = A, = Au

2
Y1 (13.29)
9, s 94
T () =(Y2 ")
S 92 S g2
for (h = o):
f(g,,9,) = 9lgy.9,) + s % (s¥g, , s¥,) (13.30)

. . . w .
where f has a power series expansion in g, resp. s g, 1.e.

-d d w

- 1
f(g1,gz) - g(g1,gz) = s f(syg1,o) + s s 9, f (syg1,o)

(13.31)

and similar for the correlation functions.
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3. Higher order terms

We close our discussion on Wilson's RG with a few comments and

observations on higher order terms.

Using the results that
* *2
u = 0(g) and m = 0(¢e)

we are able to say something on the order of the irrelevant coup-

lings v, At the fixed point (13.4) implies

¥ -2 % 3
vy =8 {v3 + 0(e™)}
and hence
*
vy = 0(63) .
The integral Ié is O(e) (see Appendix 13.A) and thus
¥ -2 % 3
Vy =S {v2 + 0(e”)}
so again
v; = 0(83).
If Ig = 0(1) (we have not evaluated this) then
* - *
v, = 8 2{v - 0(82)}
1 1
and
*
v1 = 0(52) .

As vy does not contribute linearly in the other equations (in par-
ticular not to the u'-equation) only the u2 terms contribute to
0(62). With this discussion we have satisfied ourselves that the

e-expansion used above was systematic.
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The calculation of the proceeding terms in the e-expansion is
hard to perform by the method discussed here. The main difficul-
ties are the unpleasant cut-off (shell) integrals. Higher order

results for critical exponents are given in section 14.

The calculation of the universal (cut-off independent) quantities
like critical exponents etc. is much easier if one removes the
cut-off from the model. Wilson's RG in the so-called renormalized
field theory approach is then replaced by a linear partial diffe-
rential equation (Gell-Mann-Low renormalization group equation
and/or Callan-Symanzik equation). These techniques,. however, have
their own limitations. It has not been possible up to now to cal-
culate anything beyond the weak coupling approximations (e.g.
g-expansion). The lattice RG calculaticns which are strong coup-
ling calculations in the field theory sense have a much wider

range of applicability.

In Tab. 6 we list the values for critical exponents obtained by
continuation to € = 1 and 2 from the e-expansion for the S4—model.
The agreement with the Ising values (d=3 series expansions, d=2
exact) 1is remarkable remembering all the approximations and ex-

pansions we have used.

d=4 (e=0) d= 3 (e=1) " da = 2 (e=2)

Exp. mean field] ] A Ji
(Gaussian) € | g? g3 - Ising. (HTE) € €2 Ising i
T - . : NSS—
a o) 0.167 0.077 ! 0.196 0.125t.015 10.333 -0.025 0
B % 0.333 | 0.340 0.304 0.312*.003 |0.167 0.191 0.125
Y 1 1.167 1.244 1.195 1.250+.003 |1.333 1.642 1.75 -;
$ 3 6 4.463 6.931 5.15 * .02 7 6.852 15
Y % 0.583 0.627 0.601 0.642* _003 |0.667 0.840 1
n o 0 0.037 | 0.029 0.041% .01 0 0.235 0.25
| |
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The investigation of Wilson's RG for the Landau-Ginzburg-Wilson
model again supports the Kadanoff picture of critical behavior
discussed in part I. We have found a non trivial fixed point in

4-¢ dimensions which confirms a non trivial long range scaling
theory. Also within our approximationuniversality is confirmed.
There are two independent critical exponents yi>o related to

two relevant variables , i.e. the temperature and the external magnetic
field. The fixed point theory is continuously connected to a
Gaussian theory in 4 = 4 dimensions. The critical exponents are
functions on d only,i.e. for fixed 4 they are universal pure

numbers.
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Appendix 13.A: Feynman integrals

P — 1 1 O _ _ 2 1 4 n
3 - Ik k. k2+m? k2+m2 (p-k.-k.)2+m® T3(p) = I3 # piz + Py
152 1 2 P=X47%
WA a=-1x])0(]x]-A/s)
- €] _oh-Ix x|=-A/s
Ikooo = (2'") d fddk-.. ; 2 2 = 2 2
¥ +m X 4+
A/ <|k| <A
1
I = J‘ TP e e
2 K 22 2
p?1. = | 4 (pk) 2-p? (x%+m?)
2 k Pemd) 8
1
I, = | e
3 Kyrky (k24m?) (k%+m?)  ((k.+k.) 2+m?)
1 2 11K,
28 (e 4(p (ky+k,)) 2=p? (K, +k,) 24n?)
plI =
3 K1k (k%4m?) (k%4m?) ( (k. +k.) 24m?) 3
1 2 11K,
4 2:2 2 2. 4 2 2.2
i 16 (p (k) =12 (p (k#0202 (0 ) 2y 4p* ( (ki) P

pI; = | g
’ K1k (kGam?) (k5am%) (g +k,) “4n)
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The Feynman integrals can be continued as functions of the scalar

products from integer to arbitrary real (or complex) dimensions d.

In spherical coordinates

A
fad ... = [ dar rd-1 fagg...
A/s<|x|<a Ms
with dﬂd the surface element on the d-1 dimensional sphere:
_ . a-2, . da-3 .
de = (s1nO1) (51n@2) ...(51n0d_2)d01...d0d_2d¢
o < Oi <7 : o< ¢ < 2m.
Using
" - (B2
[do sinPe = vi——
o T(%—)
we obtain the surface of the d-1 dimensional unit sphere
da/
_ _ m’2
faey = s4 = 2 e
2 -
By Kd we denote the factor
K = Sd = 2 1
a  (ond 2dnd/2r(%)
below.
Evaluation of some integrals for A > A/s >> m > o:
A da-1 da-2 da-4
_ dr ¢ . A _2-d, 2 A _.4-d da-2 ms, 4
I1 = Kd ik Kd {?2 (1-s ) —m d<a (1-s ) +A O((A )]’
r +m
A/s
. A da+1
dr r
1, =k, |9 I __
L d A/s r2+m2
d da-2
= Kothy (-5 m? A (1-27% o (B %)y

d d d-2
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14. Other Models: Survey and Results

14.1. Multicritical systems

Until now we have considered systems of the ferromagnetic short ranged

Ising type only, i.e. Hamiltonians

H(c) = - ) K_ S8 s, = T o, (14.1a)
acg ¢ B iea *

with o, classical spin variables with distributions like
RS 2 2
I §(cZ - mc, = 8(P (52))
=1
2
- 2
u . u (P (o2)}

m

o]

p(o2) =4 \[—
x m . (n=1,2...) (14.1Db)
—b(o;-m)

n
) (e
=1

For each model out of this class there is an equivalent (i.e. in

the same universality class) Landau-Ginzburg-Wilson type model

d (d) -
- . ...S
q, jqn (2m) = &7 (Zq,) sq1 a u_ (q)

i~ 8

H,(5) =
n

I

o)

with appropriately chosen parameters un(q).

From the universality or power counting arguments (section 12)

we know that there is a whole hierarchy of possible fixed points

that get non-Gaussian in d=n3? - € dimensions (d>2) if P (o)
or P' (S) is a semi-bounded polynomial of degree 2n
2n i
P, (8) = izo a; 87(x) ; a, > o. (14.2)

This polynom determines an effective potential with n the maximal
number of possible coexisting phases (Fig. 22). Stability requires

the leading term to be even with positive coefficient.
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P, (S)

one two three
phase : phases pases
Fig. 22 ’

Critical points at which more than two (bicritical) different phases
become identical are called higher order critical points (tricri-
tical, etc.). The correspoﬁding mean field (Gaussian) approximations
are obtained by replacing P(S) by (S+Mi).2 at each minimum Mi of
P(S).

The rules (they can be established by generalizing the arguments

used in part III of these lectures) for the application of the

models are as follows:
Starting from a physical (phenomenological) situation (model)

we have to specify

(i) the number of relevant parameters

(or coexisting phases)

to be adjusted in an experiment (or model) in order to observe

the desired transition

(ii) the symmetry of the order parameter (.or trans-

formation group relating the different coexisting

phases) .
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In the case considered here the symmetry is a discrete one:
s, > -S_. (14.3)
X X

These criteria follow more or less directly from the structure of the
phase diagram (number of phases, critical points, symmetries near
critical points etc. and using universality arguments). In the

case of discrete symmetries as a simple phenomenological model,

we may always consider a polynomial approximation of the Landau-
Ginzburg-Wilson type (continuous classical spin system with cut-
off).

For a system with n-th order critical point an appropriate model

is defined by a Hamiltonian

_ d 1 2
HA(S) = [d"x {E(BS) + Pzn(S)} (14.4)
Such a system (by arranging suitable the parameters) exhibits
always a
line of n-1-th order

surface of n-2-nd order

n-2 dimensional of an order

hyper surface
transition points.

As an important example (He3—He4-mixtures) a system with a tri-

critical point can be described by a polynomial

_ 6 4 2
P6(S) = ag Sx + a, Sx + a, SX + a,

With parameters chosen according to Fig. 23

"PG(S)
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(we remind the reader that a critical point always occurs when the
difference between two or more coexisting phases disappears) we may
approach critical points as

b

+ o with 59 =r > o fixed.
1

b,

If b1 > o0 we have for

r > 1 one stable state b1 + 0 is noncritical
r = 1 three stable states b1 +> o is tricritical
r < 1 two stable states b, > o line segment of bicritical

1 points parametrized by
o<r<i.

is a "reduced temperature like" parameter.

r
tricritical point

line of an order critical points

Fig. 23b

The tricritical point is the end point of the line of bicritical
points. Obviously the critical behavior is depending on the order
of the transition. In d=3 dimensions (this has been verified by means
of the e-expansion in d=3-¢ dimensions) we expect a Gaussian
tricritical point (compare the power counting argument- given

in section 12); approaching the bicritical line, however, we expect

the d=3 Ising behavior.

The bicritical Hamiltonians are parametrized by the (with respect

* :
to H bicrit ) irrelevant parameter o<r<1 (critical exponents inde-
. * .
pendent on r). With respect to H_, ., r is a rele-
: tricrit.

vant parameter with critical value r, =1. b, is relevant with

rit 1
respect to both types of fixed points. (Notice that the terms
relevant, marginal and irrelevant always refer to a particular

critical point.)
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Due to the presence of more than one type of fixed points the

physically interesting cross over phenomenon occurs. This will

be discussed to some extent below. Here we only mention that since

%
r is relevant with respect to H this fixed point is in-

tricrit.
stable with respect to infinitesimal perturbation in r. If

r=x_.. + 8r with 8r < o, however, a. fixed:.point is still
C .

*
approached,namely H . If 8r < o is numerically "very small"

S bicrit. *

then as b, > |6r| ~ o H seems to approach H__. . and tricritical
1 tricrit.

exponents are observed. In the region b, = | sr| a cross over to

*

as |8r| > b, » o takes place and the bicritical exponents

1

bicrit.
finally show up.

In d = %E— - € dimensions the n-th order critical point becomes non-

-1
. . , nd _
Gaussian in exactly the same manner the 2 order transition gets
non-Gaussian in d = 4 - ¢ dimensions. The exponent n has been cal-

culated by Wegner for arbitrary n to order e?.

_ mn®

(2n) !
14.2. n-component spin systems

(2(n-1)e) % + o(e?) . (14.5)

3

In the case of continuous, in particular rotational symmetry of
the order parameter, a simple generalization of the models con-
sidered so farenables us to describe the situation: The classical
lattice spin systems with n-component spin variables gx’ Hamil-

tonian

H(S) = - K | Z.l 3X . Ey , (14.62)
x-y|=a

and site spin distribution
0(32) = §(|5|-1) . (14.6b)

Particular cases are the models

n =1 Ising
n = 2 XY (planar rotator)
n =3 Heisenberg.

The limit n + « corresponds to the exactly solvable spherical model.
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As in the Ising case (n=1) one can relate (using universality ar-
guments) to any of these models a Landau-Ginzburg-Wilson model

(n-vector model) by replacing the real spin variable Sx in the

Ising case by an isotopic spin vector §x = (S1,....,S ) and
s? » &2
S4-+ (§2)2

etc.

The n-vector model Hamiltonian thus takes the form

e

9p2 %
[(pR 7

HB) =] [ .-l en®s@ gy s -5 ...
n.

. u (a)
4 9on a4 d, dyp-1 9pp 20

Obviously for n > 1 anisotropic interactions are possible. In the

isotropic case HA(g) only depends on rotation invariant guantities,
i.e. it is a function of |3| only. Anistropic perturbations change
the symmetry of the model (smaller symmetry group that leaves HA
invariant) and accordingly the leading critical behavior (fixed

points, exponents etc.).

Due to the presence of fixed points of different symmetry type in
the n-vector models for n > 1, cross over phenomena between the

different fixed points appear in the case of small anisotropic per-

turbations quite in the same way as discussed above for systems

with bigher order critical points (see below),

We may generallze the methods developed in section TII for the

case n=1 in an obvious way for the general n-vector model. Essen-

tially only the combinatorics of graphs change.

The power counting arguments of section 12 apply without modifi-
cation to these models. Accordingly the leading system is des-

cribed by an n-vector S4—Hamiltonian

2
H(8) = [a%% (30520 + T 52 + uEH ). (14.7)
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In the isotropic case a simple way to take into account the iso-

tropy of the interaction is to replace e.g. the S4-vertices

n i n i
) >><i by \\(/ where \\// = 3 \\//
i, k=1 7k k A = :
such that "i-charge" conservation applies to each _-<i
The isotropic propagators are diagonal in i-space, i.e.
i k. _ _

<Sx Sy> = Gik G(x-y)
and so only vertices with identical i-spin components are joined
by lines i i . (Thedotted line has only a mnemotechnical meaning
namely that no i-charge flows along it.)

Example: 1St order terms

ék —_—

—
ii ii ii

d order contributions with 2

Excercise: 1) Draw all possible 2"
and 4 external lines and write down the associa-

ted Feynman integrals.

2) Evaluate the RG-transformation (13.9) for the iso-
tropic n-vector model and calculate to lowest non-

trivial order the critical exponents.

It should also be noted that for particular values of n the order
parameter and S can be given the geometrical meaning of a vector
field,an antisymmetric tensor field,a symmetric traceless tensor

field,and so on over real space:

n=d vector
n = gi%:ll antisymmetric tensor
n = c—1—(~d—i—1~l-—1 symmetric tracelss tensor etc.

2
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The limit n » « corresponds to the exactly solvable spherical model

and an expansion around this model can be set up: the 1/n—expansion.
As the model depends only on the iso-space scalars Si = gi etc.

one can analytically continue the model to continuous real iso-

space dimensions n. This is analogous to the analytic continuation

in the space dimension d possible for rotation invariant systems

(which depend only on scalars x2, q2 etc.). The continuation in n

is possible down to n = -2. The point n = -2 is the exactly sol-
vable Gaussian model. The case d = 1 can be exactly solved for
-2 £ n < 1. For arbitrary n the critical behavior ©of the S4

models is (expected to be) Gaussian in @ 2 4 and the e-expansion

in € = 4-d > o is possible.

We thus have a large class of models characterized by (4,n) with

range

1 <d £ and -2 <£n < oo

On the boundaries of the region with 4 £ 4 the critical behavior

is known to a large extent Tab. 7 and Fig. 24.
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Gaussian Spherical
n=-=2; 2<d<14 n=o 2<d4d=c<i{4
4-d y = 4-d
“ =2 a-2
a-2 _1
B == B= 3
- 2
Y = 1 Y = d-2
n = o n= 0o
Mean field 1-dimensional
1<n<s d4dz=14 -2 < n <1 d =
a = O =
1 B =
= = = o
B= 3
y = 1 -
Tab. 7 —_—
W o A ey
d=1 d=2 d=3 d=4 d=5
v v v v v ,
Spherical o : i An=0w
model i : ! :
i ' i
| I
RV A T
i ' i
| 1
-: . : an=4
i I
| |
Heisenberg » i n i an=3
| |
XY/planar » : @] 2] : an=2
| |
v |
Ising > : .H(_ 8 : «an=1
| Onsager 1
I A |
polymer |>-.i ........ o Y l ......... < n=0
| |
! ! :
i ) [
! I
[Goussion B : an=-2
A A A &
i 2 3 4 —I>
Sp— i | d
O3 T
I'1G. Diagram of the (d, n) plane showing the expansion variables

€ =4 —d and 1/u, the boundaries at # = » and —2, and d = 1
and 4, and various physically rclevant cases.

Fig. 24
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In the interior of this region only the Ising case (d,n) = (2,1)
is exactly solved. All the other physically interesting cases
(see Tab. 8)

d=1,2,3 , =n=o0,1,2,3

1/

investigations of the physical cases are possible and have been

can be reached by the £- and n-expansion (of course also direct

performed to some extent (see part II)).

Physically realized systems

da = 3:

n=1,2,3 magnetic materials

n=2 super fluid helium, He3 - He4 mixtures

n =1 normal fluids, fluid mixtures, alloys

n =o polymer chains in solution

d = 2 films, monolayers, submonolayers, layered magnetic systems
d =1 linear chain of magnetic. ions in crystals

Tab. 8

Below we give the values of some exponents calculated by the
1/n- and the e-expansion. As expected from the universality they

only depend

(i) on the dimension d{(e)

(ii) on the symmetry index n.
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TABLE I. Third order ¢ expansion® for the exponent 7. TABLE II. Fourth order expansion® for the exponent ».
2 + 2) (n? + 221 + 52)
y=14 (n+ )e+ (n Y (n .:x 2 y = w2 oy n4 2 24(3u+14)_ 8
2(n + 8) 4(n + 8) : 2(n 4 8)* 8(n+8)2| (n+ 8)2
+ (n+2) (5 + 27 n4 2 —5nt4- 234n 4 ].0_._.76
8(n + 8)* 2(n 4 8)* 16(n + 8)?
(n4+2)(n+43) — (10u 4+ 44) £(3) 324 53n 4 160 4 3(5n + 22) £(3)
+ 24 — 8=
(n+ 8) (» + 8)?
S5n% -+ 268n +- 424 3 + 14)2] -
4 34 O(e'). LISl Pt 5.

+ (n+ 8)? ]e ‘ + 45 (n 4+ 8)¢ ¢+ 0l
s F) . zin, J. C. i . Zinn-Justi d B. G. Nickel o -
(119!'7%[;‘_}3 Bréein, J. C. LeGuillou, J. Zinn-Justin, and B. G. Nicke & I'rom E. Brézin, J. C. LeGuillou, J. Zinn-Justin, and Nickel (1973).

TABLE III. [First order 1/n expansions for exponents for 2 < d < J4.»

2 344 1
‘a-zP'“7‘+°(Eﬂ
C4—af  4d—1) A 1

a——d—2[1~— 4—d) u +O<n’>:|

2(4 —d) Aq 1
" d " + O(n’)

where
2I(d -- 2) sin(3d — 1
Ad: ( 1 - Sln-.(-| )w) "13 =4/7=v
[(TGd —DFEd - 1)
and
Aioe = Jeas e >0, Azyo = 100580 — 0

s I'rom M. E. Fisher, S. -K. Ma, and B. G. Nickel (1972); M. Su.uki
(1972), S. -K. Ma, (1973); R, Abe, (1972, 1973); R. Ahe and 8.
Hikami, (1973).

Tab. 9

A comparison of the numerical values obtained from these expan-
sions with data from numerical analysis are given in Tab. 10.
The reader may convince himself of the quality of asymptotic

1/n- and e-expansion results which do not allow s to estimate
errors.

Fisher has plotted contours of constant values of the exponents

a, B, Y and n (from e-expansion) in the (d,n)-plane Fig. 25. These
plots give an interesting qualitative picture of the (d,n)-depen-
dence of critical exponents; in particular one gets an impression
of the rate of change of the exponents with d and n, and pecu-
liar points and lines are observed. The one dimensional Ising

point (1,1) turns out to be a confluence point of the CoOntours.
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FIG. 4 Contours of constant exponent g in the (d, n) plane. Note the
smoothly rising trend and the near vertical contours ford =3, n=1,
2, and 3.

FIG. 2 Diagram showing contours of constant exponent a in the
(d, n) plane. The dash-dot contours indicate negative «; the solid
contours are for a > 0. : :
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14.3. Anisotropic Systems

Real physical systems in general exhibit anisotropies in real
space (anisotropic lattice structures) as well as in the space
of the order parameter (i-space anisotropies). It is therefore
very important to know the influence of such anisotropies on
the critical behavior of a system. Here we restrict ourselves
to considering (i-space-lanisotropies in the ferromagnetic

n.n. interactions (assuming that n.n.n, four spin and more com-

plicated interactions do not change the critical behavior).

Real space anisotropies do not affect the leading critical be-
havior. By universality the lattice structure (e.g. lattice
anisotropies) is expected to be irrelevant. Nevertheless for

very strong anisotropies quasi d'(<d) dimensional behavior -may

be observed in "pre"-critical regions with a cross over to d-
dimensional behavior at criticality (see section 15). Thus we
shall only consider an anisotropic system described by a Hamil-
tonian of the form

H(G) = - ¥ K o (14.8)

0k
Ix—y|=a x-y,ik "x "y
i,k

with & an n-component spin variable. The site spin dlstrlbutlon

may be either symmetric p = p(lol) or anisotropic p = H1 Py (oh).

A. Quadratic Anisotropy

The most important anisotropic systems are those with aniso-

tropic K and isotropic p(|o|) (quadratic anisotropy) .

The n-isotropic coupling

Re-y, ik = Kx-y Six
is replaced by an anisotropic coupling

Ky-y,ik = (@iKyoy ¥ by S5 y) S5y
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with a; > o and Kx- the n.n. Ising coupling. We will assume K
to be isotropic in an m-dimensional subspace and in its ortho-

gonal complement, i.e.

Aqreesy @, =a; am+1,...,an = a'
—_ gia - [}
b.l,-.o' bm—b,bm+1’-oo'bn b -
Furthermore we assume that p(|3|) is isotropic in the variables

o’ for which K has diagonal form.

Again the translation into the Landau-Ginzburg form goes along
the lines discussed in part III. The new spin variables st (x)
are (re)normalized such that the %lgqlzqz-term in HA(S) is sym-
metric with coefficient 1. The leading part of HA(S) then takes

the form

Hy(s) = fa%% (3032 x) + 5 :szi(si)z(x) + iXkuik(si)z(sk)z(x)

(14.9)

Il

with st \/Zkal a?™d 41

x X
~b/2

2 2 Yo

my = ~-2a “( Ko + d) (14.10)
i
u

U, =, nd74 (compare (10.15)).

ik 2

4k a;ay,

Stability requires the matrix uik‘to be positive. By a suitable

choice of parameters this system exhibits a hierarchy of

fixed points each characteristic of the isotropic m-vector like

model. . Apart from the n-isotropic critical point there is a
line of n-1 isotropic

surface of n-2 isotropic

n-m dimensional

hypersurface of m isotropic
n-1 dimensional of 1 Ising
hypersurface

critical points.
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Oniy the "end points" characterized by Ujp = O for i,k = {m+1,...,n}

D
of the m-isotropic dritical domains (m<n) correspond to(:‘usual m-isotropic critica
point. The components SE+1,...,S§ are then decoupled and inde-

pendent Gaussian.

In the parameter space of the Hamiltonian (14.8) this corresponds

to critical points with a, =b;, =0 for i =mtl,...,n and the
remaining components 02+1,...,c§ form an independent site spin
model.

In general the 1lower index critical points are "m-iso-

tropic like" in the sense that only the fluctuations 01,..0m,

in the m-dimensional subspace become critical whereas the
m+ m s . .
o) 1,...,0 have non critical fluctuations (i.e. do not scale

for large distances).

An important example of an anisotropic system of the type consi-

dered here is the anisotropic Heisenberg ferromagnet

> - >
H(o) = fg.so(o) t g Haniso(c)
H  =-%k J G, -0
iso x y
| x-y|=a
- 3.3 _ 1,1 1 2
iniso~ ~ K Ix§v|=a[0x o 5 (0 Oy + o, oy)].

The form of Ha Ois dictated by the continuity of the system

nis
at g = o:

<H(S)> = <H. (3)> ___ .
g=0 iso g=0

The couplings are

k(1+g) for 03

k(1-%) for 01 and 02

accordingly we have the isotropic points:
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g =0 Heisenberg

-1 Xy

Q
Il

g = 2 Ising.

The Heisenberg critical point g = o is instable with respect to
anisotropic perturbations. For 2 > g > o an Ising like critical
point exists i.e. o® fluctuations get critical whereas the o!, o2
fluctuations do not similarly for -1 < g < o an XY¥-like critical
point exists i.e. o!, 0? fluctuations get critical whereas the

0% fluctuations do not.
In the corresponding Landau-Ginzburg form the effective potential
is:

i, 2 k
uik(sx) (sx

3
2 2
)S o+
P4(§) may be diagnolized in the (S:‘()2 variables. The even rele-
vant parameters may then be chosen according to Fig. 26 which

in the directions i = 1,2,3.

4

shows the profiles of P

Py

Fig. 26a

Without loss of generality we may assume h1 = h2 = h3 > o for
temperatures below Tc’ Critical points may be approached as

h h

h, - o with Hz = r _3

v = r,.>0 fixed.
1 1 1 h2 2
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If h1 > o we have for

r1 <1, r2 < 1 two stable phases; h1+o m=1 critical

ry = 1 . r, < 1 1-sphere of stable phases; h1+o m=2 critical
ry = 1, r, = 1 2-sphere of stable phases; h1+o m=n=3 critical
h, is a "reduced temperature like" parameter.

r, |
1 +— =3 Heisenberg
m=1
Ising m=2 XY like
like
1 r,
1
Fig. 26b

With respect to the Heisenberg fixed point ng1 and r, are rele-

vant variables with r ., .. =TI, . =

Small perturbations in r, + r, = 1+6r2 ' 6r2<o lead to a cross
*
over to the XY fixed point H2

*
tr,=148r., 8r,.<0 lead to a cross over from H,(r,=1) or
1°71 1 1 * 3'71

Hﬁ(r2<1) to the Ising fixed point H

*
lative to H2 2

The relation between the geometrical variables h1, r,r Ty and

whereas small perturbations in

r
1 o<r2<1 is irrelevant re-

*
and o<r1,r <1 are irrelevant relative to H1.

the physical parameters may be worked out in a straightforward

manner. In general this relation does not have a simple form.

B. Cubic Anisotropy

Another interesting anisotropic system (observed in magnetic and
structural phase transitions) is the one with so-called (hyper-)

cubic anisotropy. It may be defined in terms of an isotropic
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Hamiltonian

H(G) = - ) K, G, +3 14.11a)
|x=y|=a *7¥ * ¥

and a particular anisotropic spin distribution
n .
b 2 i, 4
-u_(0°-1)" =v_ .L,(0)
0(3) = e © e O F1ITX (14.11b)

The corresponding Landau-Ginzburg Hamiltonian thus reads

2 n .
Hy(8) = [a% (05 %) + - 8206 + u@Eix) + V.Zi(Sl)‘l(x)}.
1=
(14.114)

Below Tc this system orders in a discrete set of states along the

axes and diagonals of a (hyper-)cube i.e. for m2 < o the effective

potential
noi4 2.2 . m? 22
p3) =v ] (s +u@E)+3- 8
i=1 X 2 X
has minima at
S, = (0,0,...0,£1,0,...0) (%) "/?
(14.12)
_ 1 1 1 c \1/2
Sd = (173 S --'173) (;:E)
m2
c = -7 > o and
2 2
_ __¢c
P(3) = - o35 ¢ P(3Y =5 - (14.13)

‘o . v
Stability requires u+v, u+; >0 (n > 11)



AV
ut—=0
n
. T u
/
utv=0
Fig. 27

If v > o the stable states are represented by the 2% end points
of the diagonals; if v < o the stable states are represented by
the 2n end points of the axes. If v changes sign a first order
transition axial & diagonal takes place below T.- This situation
suggests that there should be a new type of critical behavior.

Indeed a new type of fixed point, thecubic fixed point, is found

in the e-expansion of the RG-transformation for this system.
As the system is

n-isotropic for u > o , v =0
and (n decoupleﬁ copies)

Ising for u=o0, v >o0

there are (apart from the instable Gaussian) three fixed points

in competition. The fixed points and their associated critical

exponents to lowest order in € = 4-d are given in Tab. 11.
o * *
u v Y4 Y Yy
— —— : e i
Gaussian o o 2 € €
. . £ n+2 n-4
no1SOLropic | TgniE) © 27n¥8 ©| 7° Sh8
Isin o 2-< £ -
g 16+9 3
. € € ,n-4 n-1 4-n
cuble 80 T6e5n ) | 2Tt | ° “3n°
. |

Tab. 11
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It is important to note that the stability properties (yu v $°
’

stable, Ya.v > © instable) of the isotropic and cubic fixed point
14

*
and the sign ov v depend on n.

The value of n for which the stability of the cubic fixed point

changes is defined by
yv(nc(d),d) = 0 (14.14a)

and one obtains

n (d) = 4-2¢ + % e? (z(e) - %) + 0(e?) (14.14b)

with £ (x) the Riemann z-function.

The topolog§gof the two different regimes n < nc(d) and n > nc(d)

are depicted in Fig. 28.

v v
/

b | i. '

/ Is & diagonal \ [ Is'e
/ !
oo v \

AR
k1S &
e

~<_——~,.._
diagonal
E— .

——— % 1 G Z = Iso g =
- x*\\-\ // axial
Ny Ylw¥ P oaa
§ \ P
e
= AN
N -
I3 \ ‘/
axial
. . >~ ~ /
~.axial N\
Iso-stable : C-stable N
< >
n nc(d) n nc(d)
Fig. 28

. . t
The boarder lines G-Is and G-C resp. G-Is and G-Iso are lines of 1°

order transitions ¢. In the "attractive regions" of the fixed points
the system clearly only orders below TC.
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In the case n < nc(d) the iso-fixed point is stable

whereas for n > nc(d) the cubic-fixed point is stable.

In the border case n = nc(d) the iso- and the cubic-fixed points
coincide. In each case small perturbations of the instable fixed
points lead to cross-over phenomena. '

The critical exponents for the cubic-fixed point are:

nc (n+2) (n'2'1) E2 + O(Es)
[ =
54 n (14.15)
2
v = 1 + n-1 + (n=1) (17n +299n—424) e2 + 0(e?) .
Cc 2 6n 2
648 n

As N <<niso for n < nc(d) and Ne > Moo for n > nc(d) the stable

fixed point is always the one with the largest value of nl!l.

For n - o we notice

c [
(14.16)
Ve © 1fés
Is

To conclude the cubic anisotropic system exhibits a excitingly
rich structure. However,as.nc(d=3) ~ 3,13 it seems that for all
physically interesting cases the iso-fixed point is stable. Also
the cubic and isotropic exponents for n = 3 are numerically close
to each other and cross over phenomena would be very hard to

observe experimentally.
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14.4. Long Range Interactions

So far we only considered systems with short range forces. The
RG-methods developed in part III apply equally well, however,
to systems exhibiting long range interactions. We briefly sum-

marize some results.

A. Isotropic long range exchange forces

We consider the influence on critical hehavior of an inter-

action term

> > >
H(o’) = = z .
X-y,0 X y
X,y
with (14.17)
C
Koo g = i |x-y| >> a
X-y,0 Ix_y|d+0
and . >5 2
-u_(0g°-1)
p(3) = 6(a2-1) resp.\/%°e ©

The leading contribution of the long distance tail is given by

- _ -0 o 2_2-0

Kq,o = u,a - uolql + 0(g”a” ") (14.18)

- _.a e—iqx < 4 e—iqx

Kg,0 = 2 ZWE = J s s (14.192)
X & _f; (x"+a”™) 2

for N » » and |x| >> a. The replacement %% » x%+a? is necessary
in order not to pick up artificial singular short range inter-

actions in the continuum form. For o < ¢ < 2

iJfe!

—j_qx —_— o r Jd—2(r|q|)

< a
d = S, I'(= d 2
fa ars = Sa Q) (gp © far - I
2, 2228
(r"+a”) 2
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2 2
= sdr(%) ig———ﬁﬂ—- K, (alql) (14.19b)

Ir(d/2)

1

Kg(a[qi) = % - {1 g(a]ql) - Ig(a|q1)}

> sinoi —2 >
and
2
Z,V o (_Z__) 5 o (0] (6]
I (z) = (5)° ) - - ; = T'(3) T(1-3) .
Vv 2 k=o kiT (v+k+1) sino% 2 2

Iv(z) and Kv(z) are the modified Bessel functions. Thus

a/2
== E— {r(%) a % +rT -g)(lgly°+ 0(g%)} . (14.19¢)

q,0
r &9

The existence of the thermodynamical limit requires ¢ > o and
as the leading n.n. term is O(q2) we are interested in the re-

gime with
o < 0 < 2.

The leading terms in the related Landau-Ginzburg Hamiltonian

then read

HA(§) = HO + Hi

nt
B (3) =1f | 1% (m%u_|q|%) (14.20)
o 2°q'°q o
>2. 2
Hint(§) =uf (B0 .
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Again the leading bilinear term defines Ho' the classical (free)
long range (l.r.) Hamiltonian which can be solved exactly (see

section 10), We have the generating functional (n=1):

z {7} = exp %(J,GJ) ~ (14.21a)
with
@,63) = —— [ a% |5 | —1— . (14.21D)
(2m) ¢ |q|=A 9 |g|%+m

The two point correlation is

iq(x-y)
<Sx S > = Gx_ = 1 3 f ddq £ T— . (14.21c)
b Y @2m® |g|=a |a] " +m

The connected higher correlations all vanish. Obviously the cut
off limit A » « exists in the sense of distributions. In field

theoretical terms Sx is a non-local scalar field (also for A = ). “

For the interacting model u > o the perturbation expansion with
respect to the new HO has precisely the same old form with a replace-
ment of the propagator

1 1

by S
2 2
m2+q m +|q|0u0

Apart from this change the Feynman rules given in chapter 10
remain the same. The RG-transformation is defined in exactly
the same way as before and it can be evaluated in a perturbation

expansion with respect to the new Ho (see section 11).

Obviously the coefficients u2n(q) defined in (11.10a) are no
longer analytic in q. They have, however, a double power series
expansion in |q|® and q i.e.

a, (@ = I P alal® g (14.22)

nlmo
n,l,m,o

with P a polynomial of degree 1 in q and of degree m in lq|®
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Accordingly the power counting given in section 12 holds with

obvious modification. We obtain

g'(s) =« s?

with (14.23)
w = 2nx -(2n-1)d-1-moc = d-2nds—l—m0 .

We thus have apart from the terms discussed in section 12

(see p. 90) the new terms:

n =1 n =2
m=1, 1=0 s 3% s s3 3% s
2-n-0 4-3@-2n-0
m=1,1=1: s 392 g s3 392 g
-N-o 2-d-2n-0o
m=2,1=0 s 329 g s3 329 g
" 2-1-20 4-d-2n-20

The S-field renormalization exponent x defined in (11.3) and
(11.7) has to be determined in such a way that the RG-trans-
formation leads to a non singular limit for <SX So>. Thus we

require

Wgaog = 2x-d-0 = 2-n-0 £ O . (14.24)

In this case the other extra terms are irrelevant. First we
notice that the free (classical) l.r. system exhibits a trivial

*
fixed point (m =0) with

= 2-0 . (14.25)
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Let us denote by L and M the exponents n corresponding to

the short range and long range fixed points.

In the interacting case the following cases must then be distin

guished:

(i) If n > classical i.e.

sSr nlr

o > 2-n (14.26)

then the parameter U is irrelevant with respect to the
s.r. fixed point, i.e. the s.r. fixed point is stable with

respect to the l.r. perturbations with ¢ > 2 = Mgy

(ii) in the border. case Ngr = Nyy
=2 -n (14.27)
Mg is a persistent marginal variable relative to the s.r. point.
(iii) In the range

. < < _
o] o 2 nsr

Hy is relevant relative to the s.r. fixed point, i.e. the

s.r. fixed point is instable with respect to l.r. pertur-

bations with o0 < ¢ < 2—nsr. In this case there is a stable

l.r. fixed point with

Ny = 2-0 , (0o < 0o < 2—nsr). (14.28)

at least for the classical case.

The possible influence of the 84—interaction term follows

from a consideration of its associated exponent

Yy = wsh = d—4dS = 20-d (14.29)

with dS the classical l.r. dimension of S

dS = d-x

il

d-o % = x = d+o
2 ! cl™ 2
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It follows
< 0 da > 20
Yu = 4 = O d = 20 (14.30)
> 0 d < 20

i.e. the classical l.r. fixed point u*=o is stable for

d > 20, actually including 4 = 20. For d < 20, however, a
non trivial fixed point appears as S4 gets classically
relevant. This fixed point can be studied by means of

an e-expansion in
€ = 20-d.

The different regimes in the (d,0) plane are shown in
Fig. 29.

.dJ
classical s.r.
4y 4
classical L.r. ls
*
3 u 1r
non triv. s.r.
u¥ « g
2 sY
19 = ,
// !
1 1.75 2 c
24
= 4- LI =2
€ a , 4 5

Fig. 29



- 138 -

The classical l.r. exponents are

Vo= 1/0’ , N = 2=-0 y Y = 1 , O = 2—d/0’ (d > 20). (14.31&)

The non classical l.r. exponents

nlr = Ny, classical = 2-¢0
(14.31Db)
_ 4 _nt2 € _ (n+2) (7n+20) £,2 3
Yire =1V " 538 5 3 A(o) (35)7 + 0(e”)
(n+8)
with
A(o) =o{@(1) = 29(3) + y(0)}

and Y (o) the digamma function.

The other exponents follow from the scaling relations. It is
interesting to notice that Ny always takes its classical value

(confirmed by the e- and 1/n-expansion).

For n + «» in particular

n1r
(14.31c) .

Yir © 75 )

The physical conclusion of these considerations is that small
Hy
l.r. fixed point if o < 2 - nsr.

perturbations of the s.r. system lead- to a cross over to a

B. Dipolar forces

Dipolar forces are long range forces that are not invariant under
separate rotations in space and i-space. In a fundamental way they
appear in systems where the order parameter is a vector field over
real space i.e. n=d. Dipole-dipole interactions have a demagneti-
zation effect in ferromagnetic systems and one expects that they

therefore affect the critical behavior of these systems. On the
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other hand there is no demagnetization in the antiferromagnetic
case and thus critical behavior of such systems is expected not

to be changed. The dipole-dipole interaction Hamiltonian is (*)

3 ik
H(A) = - K .. A- A
[reglma XYk XY )
ik
with (14.32)
(x-y) ; (x-y)
_ 2 1 i k _
Ry-y,ik = BHg 9;9 g (@ 2 Six) -
| x-y| | x-y|

We have replaced the d-component spin variable 3(resp. "§) by

1,-...-.,Ad)-

_)

A= (A
We suppose the vector field A to have an isotropic distribution
as in (14.17). Furthermore we only consider the isotropic form
91 T 9% T 9o
which A transforms as a vector field.

. H is then invariant under space rotations by

The dominant small g-term (exact for a=o) is

~aip = 3i4

Rq =", £ + o(a’q®1ng®) ((14.33)
q

(*) This form of the interaction is well known from classical electrodynamics.
The dipole moment of a neutral system of charges q is

> 5 -
p=eqr.
The electromagnetic field of a point like dipole reads

3 > +)+ 2
- - (pex)r rp

4dme r
o
1] N} . . + -+
and the interaction energy of the dipole field with a dipole is p*Es In a
dipolar medium the field strength is the sum of the external field E_ and
the dipole induced "deelectrization" field E which+for ferroelectrics
(gnt&ferroelectrics) is angipagallel (parallgl) to E . ;n the magnetic case
(p, E) is replaced by (1, B), B the magnetic field and u the magnetic mo-
ment. The magnetic moments of electrons or atoms are given by

¥ e oud
u = gUB .
> .
g is the g-factor, u ghe Bohr magneton and J the angulag momentum. With

the replacement of -~ J by the classical spin variables ¢ the above form
of the interaction energy follows in the generalization to d dimensions.



o X.X §. .
dip _ d ik _ ik -igx _
q, ik £ d x{a Er _g} e (14-34a)
-Ro (x2+a2) 2 (x24a2) 2 4/
_ 9 ] it
- {daq g Kq,0=2 oy q,0=o}
i k
with K s given by (14.19).
!
Let z = a|g| then
5 3 _ .2 1d 4 1d.,2
3q; 3q, %) =@ Sz FAta G ) 102

in particular

3 ) _ .2 4 -1
E E{' Zz K.] (z) = a le KO(Z) + a qlqk zZ K1 (z) .
It follows
. da/2 K, (alq]) d/2 q.qg
~dip _2m 2 1 _ _ 2m i-k 2 |
Ki;,ik * Ta. @ 4% Tarqr T 3 3+ 0(a“gqyqplnalqy
I(E) F(f) q
(14.34Db)
In the limit a - o the leading term is exact.
In the Landau-Ginzburg form including the leading s.r. terms,
we have:
HA(A) = HO + H1nt
1 -1 -k 2 = di%
H (R) = 5 / Ay By ((m%4cqg™)8;, + 9 —5— ) (14.35)
i,k g q
>\ _ 2>2.2
R [ RD

Also in this case the leading bilinear term defining HO has changed.

In field theory language the pure dipole term i.e. c=o defines a
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system of self interacting vector bosons. The free (classical) case
again is of "Gaussian type" i.e. formulas (10.26, 27) resp. (14.21)
hold with obvious modifications; in particular the two point corre-

lation is

ik 1 d ig(x-y) =
<AT A > =G . = d e G . (14.36a)
X Y x-y,ik (ZTI')d |él-<—A q quk
with G_ . the inverse of
q,ik
~-1 2 2 - 939%
Cq ik = ™ *cq )8 *g o
which is - q'qk
- i} 1
- 6ik =i 2, 2 2
Gy ix = gzm Tcq 9 . (14.36b)
q:1 m- + cq

The presence of the s.r. term c>0 is crucial because the critical

small g-behavior of éq is discontinuous in c:

~ 1 9319 -2
c > o0 : Gq — (6ik “ 5 ) « g . (14.37a)
cq q
If ¢c = o0
-~ 3 _1___ _ 6 1 qiqk
Go,ik = = Gik —5 3 5 const. | (14.37b)
m g+m~ m q

We assume the fields to be normalized according to the s.r. term

with ¢ = 1 in the following i.e.
§, da.q
> ik = ik
G, ., =—F5——5—-¢ - & (14.38)
q,ik m2+q2 q2(m2+q2)(g+m2+q2)

Again with replacement of the g = o propagator by the one with

§ # o we may set up the corresponding perturbation expansion in u
for the correlation functions and the RG-transformation. The power
counting (section 12) remains valid also in this case, the only

change being that the coefficient functions u2n(q) are no longer
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. . . > > > 3 .
rotation invariant. The scalars x - Ax, q- Aq etc. again can be

continued to non-integer dimensions.

The new operators appearing in addition to § = o terms are:

n =1 n =2
_ i =2 k ik,1.-4 m
l1=o0 Lo AT 3 73,9, A L. ATATAT3 T9,9,049 A
i,k i,k,1,m
w=2-n 4-d-2n
_ i k ik, 1.-2 m
1 =2 L A" 3,9, A o l. ATATATD "9.3,3,3 A
i,k i,k,1,m
_n 2—d-27‘|
_ i N2 k ik, 1 m
1 =4 L AT 3%9,3, A 1. ATATAT 3.9,3,9 A
i,k i,k,1l,m
-2-n -d-2n

Thus we have a new relevant field relative to the s.r. fixed point.
For the pure dipole interaction we would have a trivial (classical)
dipole fixed point provided

ndip =2 .

In the presence of s.r. interactions § is a relevant field; 5, how-

ever, is not independent of the other relevant parameter m2. m2 and

§ are both proportional to B = ElT and hence 6 - ac « m2 - mg.
We therefore introduce as indepeBdet parameters Am? = m? - m? and

c
g =9 - gc/Amz. g is a dimensionless parameter, i.e. it transforms

canonically with w = o (canonically marginal). Therefore there is
& competition between the operators

GR)2, 7 ats72. 5 A% 22,2

ik i’k

From (14.37) already it follows that for the "Gaussian" fixed point
m*¥ = o , u* = o,g arbitrary, the two point correlation does not co-
incide with the Gaussian s.r. theory. A typical non rotation inva-
riant term survives. In d < 4 the critical long range behavior
again gets non-"Gaussian" and does not coincide with the s.r.

fixed point theory.
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From the e-expansion it actually follows that the s.r. fixed point
is in any case instable with respect to dipolar perturbations and a

non trivial stable dipolar fixed point exists for d < 4. The criti-

cal exponents relative to this fixed point are:

dip _ 20 2 3

Nt = g7 £t O(eT)

Ydip =1 + n+24 £ + 0(62) .
2[n+8"m]

We notice that ndlp > Moo s i.e. as in all other cases the stable

fixed point is the one with largest value of n.

It should be noted that the values of the dipolar exponents
in the physically interesting case d = 3 are again very close to the
s.r. exponents (e.qg. Ydipu 1.372, Ysr & 1.365 and adipu—o.135,
asr==—0.125) and hence itwould be very difficult to detect the

difference experimentally.

For the results on anisotropic dipolar systems (in particular the
interesting uniaxial dipolar case) we refer the reader to the

literature.

The critical behaviour of many other systems has been investi-
gated by means of the RG-method (compressible ferromagnets, semi-
infinite systems (surface séaling), time dependent systems, quan-
tum spin systems, percolation systems, Kondo system etc.). The
discussion of these systems goes beyond the aim these lectures

and we refer the interested reader to the relevant literature.
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15. Cross-Over Phenomena

From our discussions in the foregoing section we already know that
the critical behavior of a system may be instable with respect to
several types of perturbations as anisotropies, long range forces,
dipolar forces etc.. If the perturbations are "small" the system
may show the critical properties of the unperturbed system in a
preasymptotic region. When the critical point of the perturbed
system is approached, however, the perturbation becomes important

and a cross-over to the asymptotic critical behavior takes place.

Let us describe this situationfor the simplest case in a more
quantitative way. The unperturbed system is described (in zero
external field) by a Hamiltonian H with one relevant field, the
reduced temperature t, and fixed point H . H= H + g\O is the
Hamlltonlan of the perturbed system g is relevant relatlve to

H . H has another fixed point H relative to which g is an irre-
levant variable. Thus the RG-transformation transforms H in linear

approximation as

. % . vy
RH =H + st + s 9g + ..... (15.1)
relative to H and
* Ly Yg
RH=H +s t(g) + s g + .... (15.2)

*
relative to H . The reduced temperature of the perturbed system of

course depends on g. With

T—Tc(o) T—Tc(g)
= T (o) ¢ t(g) = T (q)
C Cg

we may write
T (9)

t = t(g) +T*T67“ t(qg)

where
. B T (9)-T_ (o)

t(g) Tc(o)
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is the<k¥ﬂacamg¢,of the critical temperature relative to the un-
perturbed system. A cross-over situation is present if y, yg > 0
and y > o however yg < 0. The free energy density then transforms in

the fields t and g as

sing(t,g) = s_d f'(s?t, s gg)
(15.3)
= 1¢|9Y £ (+1, =2, )
ik
where
. yg _
¢ = °/y >o0 (15.4)

is called the cross-over exponent. In the fields t(g) and g on

the other hand we have

a/,
= y g
foing(Er9) = [ €] £ (£1, er® ) (15.5)
Yy
where ¢ = g/y < o such that
- ! -¢
g' =git] " >0 as |t] » 0o | (15.6)
1

f (#1,9') is regular at g' = o and we can set g = o for fixed

t = t(g) # t = t(o) for which case g is an irrelevant field. Ob-
viously the leading scaling form (15.5) must have a singularity
at t = t.

If g # o and g|£|_¢ << 1 the scaling form (15.3) describes the be-
hav}or of the system and unperturbed exponents y etc. are observed.
As t -+ o, however, in the region g|£*|f¢ ~ 1 the t- depenaence is no
longer described by the scallng factor in front of f as £ itself
§ubs?ant1ally depends on t. ThlS is the cross-over region. At

t = t(g) the function £ (1, g|t| ¢)

which is reqular at g = omust have a singularity

2 i - . . _, d/y
£ (1, g|t]™® ) = clglt]™® - glt(e |4

to match form (15.5). Depending on whether ¢ > 1
or o < ¢ < 1 the cross-over region is depicted in Fig. 30.
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glt]™? =1
g g - -
critical / cross over glt|—¢= 1
____region )
.1 over B ey .
__region e
.—critical e T
S 7
~ w——"_h-ﬂ_'___,_,-’—-——""__'_
- .—critical .
Tt t
Fig. 30

The fields conjugate to the relevant variables have critical fluc-
tuations at the corresponding critical point. So for the unperturbed

critical point (t,g) = (o0,0)
<Oi.:x ®to> and <©gx @go>

scale at large distances and the related "susceptibilities" diverge

At the perturbed critical point only

< CDt(g)x ©t(g)o>

scales at large distances at t(g) = o whereas

<0, O

go

has non-critical fluctuations and the corresponding "susceptibility"

stays finite Fig. 31.
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Fig. 31

In the flow diagram of the Hamiltonians, cross-over situations are
characterized by 'a near-by - passage of trajectories at an in-

stable fixed point Fig. 32.

irrelev.')

Fig. 32 A: cross=over

B: non crossaover

The cross-over exponents are always given by the exponent of the
perturbation term relative to the unperturbed fixed point norma-

lized by the temperature exponent y.

For the quadratic anisotropy 9g > y such that ¢ > 1

2

+24n+68 3
¢ . =1+ e g 4 b 22DTOT o2 o(e®).
anis 2 (n+8) 4(n+8)3
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.

In general 99 < v and hence ¢ < 1 so for the tricritical cross-over

L

2 . = -
10 + 0(e“) ; € 3-d

M

" _ 1
¢tricrit -2 +

and the cubic cross-over

. 3 2
b = n-4 e + B_tlén +4n+240 e2 + O(e?).

2 (n+8) 3

Further cross-over situations are shown in the following diagram
Fig. 33.

Gaussian

dipolar
1<mgn

aniso
long range

léng range

ey

Fig. 33

Cross-over phenomena play an important role in the experimental
determination of critical exponents. If there are certain small
perturbations in a system the true asymptotic critical behavior
may show up only very close to Tc whereas scaling may show up with
other exponents in a larger temperature range. A beautiful example

is..shown in Fig. 34. The cross-over shows up as a rather sharp
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kink in the plot where the exponents are given by the ascent of
the straight lines.

. * " - - h
oe . (Golly ¥y ), G €ty
B0 - (cHy Ny, ey

o) o)

v

T TTTTn

o8 - X (‘;")NHQAC“C!\
08 - X -

oo 4

118

[ I_,I‘ll__g

Iy

|

!
iy —
| P = 3
i E -
{ L g
|
s o XT/C
hol
:
B i
B 2 ‘
| 4
10 Lol Lol A N N
o il ] ]
Fig. 34

As indicated by the two sets of parallel lines drawn through
the data the lattice-dimensionality crossover is fom 2~dimens.

Ising behaviour (¥ = 1.75) to 3-dimens. Ising behaviour

(t= 1025)0
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16. Universality and Corrections

16.1. Universal Ratios

The RG-methods as developed in part III. where only the leading
long ranged fluctuations are treated "exactly" (in the asymptotic
sense) only allow us to calculate universal quantities as e.qg.

the critical exponents which do not depend on short distance (lat-
tice) details of a given system. In scaling forms like

x=CJ_,|tI—Y , C=Ai|t[~'°‘ ; t > %o ' (16.1)

the amplitudes C,, A, etc. are not universal, e.g. they depend on
the details of tﬂe s§stem. Formally this is related to the fact
that the normalizations of the fluctuation fields Sx’ Ex etc. or
its conjugate parameters are ambiguous and these enter directly into

+r A, etc. via

conn conn

_ d _ d
x = [Jd°x <S, 85> , C = [dx <E, Eo> etc.. (16.2)
It is important to know whether there are other universal quantities
apart from the exponents. Indeed there are many other universal numbers

namely the universal ratios characteristic of a given critical

point. These ratios can be easily obtained by forming ratios of
quantities in such a way that the ambiguous normalizations of the

Sx' Ex etc. fields drop out. In particular

RS Sl B ¢ 3

c_ = 2 8 + 0(e?®) (16.3)
and

A+ o n

— — 2

x 2 (1+e)4 + O(e”) (16.4)

are universal. Similarly from the correlation length defined as

the normalized second moment
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fddx X2<Sx SO>conn
gz = T (16.5)
fadx <s_ s_>°onn

g =f£ |t|™Y

we obtain the universal ratio

v _ 201 + 2 e+ - (222 4 2 1)e? + 0(e?) (16.6)
E 247 432 ‘24 } )
with I = }dx A0 2U10%) . _2.3439
A B G ) R .

Obviously universal ratios may also be defined by ratios of ampli-
tudes which appear when the critical point is approached from other
directions, e.g. along the critical isotherme. For d=3 the numerical

values of the above ratios. are given in Tab. 12.

g—expansion mean field series expansion | experiments
n=1 | 0.55 0.25 0.62-0.7 0.35
A+/A : n=2 0.99 0.5 = 1.05
n=3 1.36 0.75 1.11 1.36
Circ 4.8 2 5.03+0.05 -
s 1.91 1.41 1.96+0.03 2.05+0.22

Tab. 12

-In this case also the eg-expansion results improve the mean field
results and to order €2 the corrections seem to have the right
order of magnitude. This is a further confirmation of the idea

of universality and the applicability of RG-methods.

If one introduces global scaling fields & la Wegner such that




H=n +7qg, (7 (16.7a)
holds globally with

* yd. *
RH=H + gs 9, q>a (16.7b)

*
then up to normalizations of the g, ©r Q)a all quantities are
universal. (In degenerate situations logarithms or (broken-) powers
of logarithms appear in place of sY). This fact is useful if quan-

tities are expanded in terms of scaling fields.

Examples:
Equation of state: If we set the irrelevant variables equal to

zero we have
_ 8
h = cM f(t/M1/B)

where with normalization f(o) = 1 £(x) is a universal function
(e.g. depending on d and n only for the isotropic n vector model).

The expansion coefficients of f(x) in x for small x or x for

large x respectively are universal.
Two point correlation: In zero magnetic field above TC setting the

irrelevant field equal to zero we have
2 -(2-
Gl kq;t) =Dgqg (2 n)g(q/t\)).

The function g normalized by g(o) = 1 again is universal with uni-
versal expansion coefficient, if we expand for small g t-fixed or
for small t g-fixed respectively. For details we refer to the

review article by Brezin-Le Guillou-Zinn-Justin.
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16.2. Corrections to Scaling

It is important to evaluate the corrections to scaling in parti-

cular because of its relation to the size of the critical region.

a) Thermodynamical quantities

For the thermodynamical quantities the leading correction terms

are given by the irrelevant variable g with the largest .exponent
w=-y; >0 .

The free energy density then has a power series expansion in g and
one easily obtains the corrections. A brief discussion was already

given in section 13 (see equations (13.30) and (13.31)).

For the n-vector model

w=d ,6-d=c¢ - Eiégil%l e?2 + 0(e?)
S (n+8)
or , 2 (16.8)
= &~ (2-€)(3-¢) a1
w=€e-= 5 (4=¢) A(e) + O(—=)
n
and we have for € > o
£ . (t,h,g) = s 9&'(s¥t, s*n, s¥9)
sing ' ' 9 = ’ ! g
a —x/ -
= 1t]® £ =1, njt] Y, glel V)
a/ - -w/
= |n| * £ (¢/n] %, =1, gln] N
By expansion in g the leading corrections easily follow:
x(t) = CiItI_Y{1 + gC1i|t|_wv+ g wye
c(t) = Ailtl_v{1 + gA1i|t|—w\)+ cev )
g(e) = £,1¢]7001 + gf 1]V + L0}
h = cM® {1+gC1M_““’/8+....};t << 1
W1 7F
M =B(—t)8{1+gB1(—t)w\)+.._. } s h=o0
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Up to the normalization of g the coefficients of the correction
terms are universal, i.e. C1_, A1+, f1+, C1, B1 etc. are determined

from say C1+ and appropriate universal ratios.

As long as we cannot calculate at least one of the non-universal
amplitudes for the physically relevant microscoéopic model we are
not able, however, to determine the size of the critical region.

A step in this direction could be the application of the lattice
RG-methods (see part II) which in principle allow us to calculate
non-universal quantities for the microscopic model. Calculations
from the Landau-Ginzburg model by means of the - and 1/n—expan—
sion at least give an important structural insight. If the size of
the critical region is determined experimentally for one of the
above quantities the theory predicts the size of the critical
region of the others provided there are no other irrelevant va-

riables which come into play.

We finally have to mention that in the degenerate cases where

w = o0 as in d = 4 (tricritical 4 = 3) logarithmic corrections

are present (see e.g. Wegner 1972).

b) Correlation functions:

We only consider the two point functions G(z) where G(z)(q;t,h,g)

stands for <S_ § > or <E E >

q O q o -
The critical correlations can be expanded as the free energy in
powers of g yielding

2 -
G( )(q;o,o,g) =D q2 n {1+gD1 q“+...}.

It is much more complicated to evaluate finite temperature or ex-
ternal field corrections because G(z)(q;t,h) is highly non-analy-
tic at (t,h) = (0,0). The problem is to find the correction terms
to asymptotic scaling due to finite correlation length i.e. in the

region
a << |x| << £ < »

£ is the measure of the distance to the critical point (t,h) = (o0,0).



- 155 -

What we considered above was for § = o an expansion for large di-
stances, i.e. in § >> 1. Similarly if we could set a = o we could
obtain the critical region expansion o < |xl << £ as an expansion
in l%l << 1 which is a Wilson short distance expansion. In the
lattice and Landau-Ginzburg models discussed here we cannot set

a = o resp. A = » without performing singular (at a = o)
renormalizations on the fields and parameters. For fixed A corre-
lation RG-transformations like (11.11) break down for |g| 3 A/s.

As |q| b A/s the non-linear terms of the RG-transformation dominate

and a product of two fields behaves as

Oux Opy = g'faBY(x'y) 0, Xty

where the singular coefficients behave as
dY—da—dB
f(x-y) = |x-y| ;

Using this expansion one obtains in the region £ << la] << A

expansions of the form
(2) (. - 2-n t (1-a_ t
G (g;t,0,0) =D g {1#D1{—T7G) Dz(;T7;) + ...}

In the n~vector model below Tc anisotropic correction terms

appear (see Brezin et al.).

With these remarks we refer the interested reader to the references
quoted where many more details on the problems touched here can
be found.
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